Skip to main content

Transimpedance Amplifiers

  • Chapter
  • First Online:

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 55))

Abstract

Current-to-voltage converters are necessary in optical receivers in order to convert and amplify the weak photocurrent delivered by the photodiode into a strong output voltage signal which is proportional to the input current.

This is a preview of subscription content, log in via an institution.

References

  1. B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, New York, 2003)

    Google Scholar 

  2. E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  3. A.-J. Annema, B. Nauta, R.V. Langevelde, H. Tuinhout, Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40(1), 132–143 (2005)

    Article  Google Scholar 

  4. S. Voinigescu et al., Circuits and technologies for highly integrated optical network IC-s at 10 Gb/s to 40 Gb/s, in Custom Integrated Circircuit Conference, pp. 331–338 (2001)

    Google Scholar 

  5. P. Muller, Y. Leblebici, CMOS Multichannel Single-Chip Receivers for Multi-Gigabit Optical Data Communications (Springer, Netherlands, 2007)

    Book  Google Scholar 

  6. C. Hermans, M. Steyaert, Broadband Opto-Electrical Receivers in Standard CMOS (Springer, Netherlands, 2007)

    Google Scholar 

  7. M. Ingels, M. Steyaert, Integrated CMOS Circuits for Optical Communications (Springer, New York, 2004)

    Book  Google Scholar 

  8. S.M. Park, H. Yoo, 1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications. IEEE J. Solid-State Circuits 39(1), 112–121 (2004)

    Article  MathSciNet  Google Scholar 

  9. C. Chan, O.T. Chen, Inductor-less 10Gb/s CMOS transimpedance amplifier using source-follower regulated cascode and double three-order active feedback, in Proceedings—IEEE International Symposium on Circuits and Systems pp. 5487–5490 (2006)

    Google Scholar 

  10. H. Chen, C. Chen, W. Yang, J. Chiang, Inductorless CMOS receiver front-end circuits for 10-Gb/s optical communications. Tamkang J. Sci. Eng. 12(4), 449–458 (2009)

    Google Scholar 

  11. K. Park, W.S. Oh, B. Choi, J. Han, S.M. Park, A 4-Channel 12.5Gb/s common-gate transimpedance amplifier array for DVI/HDMI applications, in Proceedings—IEEE International Symposium on Circuits and Systems pp. 2192–2195 (2007)

    Google Scholar 

  12. J. Borremans, P. Wambacq, C. Soens, Y. Rolain, M. Kuijk, Low-area active-feedback low-noise amplifier design in scaled digital CMOS. IEEE J. Solid-State Circuits 43, 2422–2433 (2008)

    Article  Google Scholar 

  13. E. Säckinger, The transimpedance limit. IEEE Trans. Circuits Syst. I(TCAS I) 57, 1848–1856 (2010)

    Article  MathSciNet  Google Scholar 

  14. M. Atef, H. Zimmermann, 10Gbit/s 2mW inductorless transimpedance amplifier, IEEE Int. Symp. Circuits Syst. (ISCAS), Seoul, Korea (South), pp. 1728–1731 (2012)

    Google Scholar 

  15. H. Zimmermann, Integrated Silicon Optoelectronics, second edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  16. K. Schneider, H. Zimmermann, Highly sensitive wide-dynamic range optical burst-mode receivers for ultra-fast gain switching. Analog Integr. Circuit Signal Process. 49, 141–149 (2006)

    Article  Google Scholar 

  17. K. Schneider, H. Zimmermann, Highly Sensitive Optical Receivers (Springer, Berlin, 2006)

    Book  Google Scholar 

  18. M. Ingels, G. Van Der Plas, J. Crols, M. Steyaert, A CMOS 18 THz \(\Omega \) 248 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links. IEEE J. Solid-State Circuits 29, 1552–1559 (1994)

    Article  Google Scholar 

  19. M. Atef, F. Aznar, S. Schid, A. Polzer, W. Gaberl, H. Zimmermann, 8 Gbit/s inductorless transimpedance amplifier in 90 nm CMOS technology. Analog Integr. Circuit Signal Process. 79(1), 27–36 (2014)

    Article  Google Scholar 

  20. M. Atef, H. Zimmermann, 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers, in IEEE International Symposium on Circuits Systems (ISCAS), Seoul, Korea (South), pp. 1740–1743 (2012)

    Google Scholar 

  21. F. Bruccoleri, E. Klumperink, B. Nauta, Wide-band cmos low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid-State Circuits 39, 275–282 (2004)

    Article  Google Scholar 

  22. D.J.A. Groeneveld, Bandwidth extension and noise cancelling for TIAs, M.Sc. thesis, University of Twente (2010)

    Google Scholar 

  23. C. Kromer, G. Sialm, T. Morf, M.L. Schmatz, F. Ellinger, E. Daniel, H. Jackel, A low-power 20-GHz 52-dB transimpedance amplifier in 80 nm CMOS. IEEE J. Solid-State Circuits 39(6), 885–894 (2004)

    Article  Google Scholar 

  24. K. Schneider, H. Zimmermann, A. Wiesbauer, Optical receiver in deep-sub-micrometre CMOS with \(-28.2\) dBm Sensitivity at 1.25 Gbit/s. Electron. Lett. 40(4), 262–263 (2004)

    Article  Google Scholar 

  25. A. Vilches, R. Loga, M. Rahal, K. Fobelets, C. Papavassiliou, T.J. Hall, Monolithic large-signal transimpedance amplifier for use in multi-gigabit, short-range optoelectronic interconnect applications. IEEE Trans. Circuits Syst. II 52(2), 102–106 (2005)

    Article  Google Scholar 

  26. K. Schrödinger, J. Stimma, M. Mauthe, A fully integrated CMOS receiver front-end for optic gigabit ethernet. IEEE J. Solid-State Circuits 37(7), 874–880 (2002)

    Article  Google Scholar 

  27. F. Aznar, W. Gaberl, H. Zimmermann, A highly sensitive 2.5 gb/s transimpedance amplifier in cmos technology, in IEEE International Symposium on Circuits and Systems(ISCAS 2009), Taipei, pp. 189–192 (May 2009)

    Google Scholar 

  28. J. Tak, H. Kim, J. Shin, J. Lee, J. Han, S.M. Park, A low-power wideband transimpedance amplifier in 0.13 m CMOS, in IEEE International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals (IMWS-IRFPT), Daejeon, pp. 1–2 (2011)

    Google Scholar 

  29. M. Hassan, H. Zimmermann, An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology, NORCHIP, pp. 1–4 (2011)

    Google Scholar 

  30. F. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H.F. Moghadam, X. Zheng, J.E. Cunningham, A.V. Krishnamoorthy, E. Alon, R. Ho, 10 Gbps, 530 fJ/b optical transceiver circuits in 40 nm CMOS, in Symposium on VLSI Circuits (VLSIC) pp. 290–291 (2011)

    Google Scholar 

  31. T. De Ridder, P. Ossieur, X. Yin, B. Baekelandt, C. Melange, J. Bauwelinck, X.Z. Qiu, J. Vandewege, BiCMOS variable gain transimpedance amplifier for automotive applications. Electron. Lett. 44(4), 287–288 (2008)

    Article  Google Scholar 

  32. R. Swoboda, M. Frtsch, H. Zimmermann, 3 Gbps-per-Channel Highly-Parallel Silicon Receiver OEIC, in 33rd European Conference and Ehxibition of Communication (ECOC) pp. 1–2 (2007)

    Google Scholar 

  33. D. Micusik, Design of hybrid optical receiver with wide dynamic input range, Ph.D. thesis, Vienna University of Technology, 2008

    Google Scholar 

  34. M. Hassan, H. Zimmermann, An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology, in NORCHIP, Lund pp. 1–4 (2011)

    Google Scholar 

  35. Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)

    Article  Google Scholar 

  36. S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, T.H. Lee, Bandwidth extension in CMOS with optimized on-cip inductors. IEEE J. Solid-State Circuits 35, 346–355 (2000)

    Article  Google Scholar 

  37. O. Yong-Hun, S.-G. Lee, An inductance enhancement technique and its application to a shunt–peaked 2.5 Gb/s transimpedance amplifier design. IEEE Trans. Circuits Syst. II 51(11), 624–628 (2004)

    Article  Google Scholar 

  38. M. Atef, D. Abd-elrahman, 2.5 Gbit/s compact transimpedance amplifier using active inductor in 130 nm CMOS technology, The 21st International Conference in Mixed Design of Integrated Circuits Systems (MIXDES) pp. 103–107 (June 2014)

    Google Scholar 

  39. J.-S. Youn, H.-S. Kang, M.-J. Lee, K.-Y. Park, W.-Y. Choi, High-speed CMOS integrated optical receiver with an avalanche photodetector. IEEE Photonics Technol. Lett. 21(20), 1553–1555 (2009)

    Article  ADS  Google Scholar 

  40. S. Galal, B. Razavi, 10-Gb/s limiting amplifier and laser/modulator driver in \(0.18\,\upmu {\rm m}\) CMOS technology. IEEE J. Solid-State Circuits 38(12), 2138–2146 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Atef .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atef, M., Zimmermann, H. (2016). Transimpedance Amplifiers. In: Optoelectronic Circuits in Nanometer CMOS Technology. Springer Series in Advanced Microelectronics, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-27338-9_6

Download citation

Publish with us

Policies and ethics