Teaching Heart Modeling and Simulation on Parallel Computing Systems

  • Andrey Sozykin
  • Mikhail Chernoskutov
  • Anton Koshelev
  • Vladimir Zverev
  • Konstantin Ushenin
  • Olga Solovyova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)

Abstract

High Performance Computing (HPC) is an interdisciplinary field of study, which requires learning a number of topics, including not only parallel programming, but also numerical methods and domain science. Stand-alone parallel computing courses are insufficient for thorough HPC education. We present an interdisciplinary track of coherent courses devoted to modeling and simulation of the heart on parallel computing systems for master students at the Ural Federal University. The track consists of three modules: parallel and distributed computing, heart modeling, and numerical methods. Knowledge of numerical methods and heart modeling provides the students with the ability to acquire profound parallel programming skills by working out on the comprehensive programming assignment and complex heart modeling projects. Interdisciplinary approach also increases students’ motivation and involvement.

Keywords

High performance computing Distributed computing HPC education Heart simulation Living system simulation 

References

  1. 1.
    Anuferenko, A., Idrisov, R., Kasyanov, V., Vladimirovich, N.: Intel academy. Application optimization using intel compilers. http://www.intuit.ru/studies/courses/660/516/info
  2. 2.
    Bangerth, W.: 48 video lectures on computational science (2013). http://www.math.tamu.edu/~bangerth/videos.html
  3. 3.
    Bartocci, E., Singh, R., von Stein, F.B., Amedome, A., Caceres, A.J.J., Castillo, J., Closser, E., Deards, G., Goltsev, A., Ines, R.S., Isbilir, C., Marc, J.K., Moore, D., Pardi, D., Sadhu, S., Sanchez, S., Sharma, P., Singh, A., Rogers, J., Wolinetz, A., Grosso-Applewhite, T., Zhao, K., Filipski, A.B., Gilmour, Jr., R.F., Grosu, R., Glimm, J., Smolka, S.A., Cherry, E.M., Clarke, E.M., Griffeth, N., Fenton, F.H.: Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and gpu programming for the study of arrhythmias and spiral wave dynamics. Adv. Physiol. Educ. 35(4), 427–437 (2011). http://dx.doi.org/10.1152/advan.00034.2011
  4. 4.
    Bauman, P.T., Chandola, V., Patra, A., Jones, M.: Development of a computational and data-enabled science and engineering Ph.d. program. In: Proceedings of the Workshop on Education for High-Performance Computing, EduHPC 2014, pp. 21–26. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/EduHPC.2014.8
  5. 5.
    Bueno-Orovioa, A., Cherryb, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theoret. Biol. 263(3), 544–560 (2008). http://dx.doi.org/10.1016/j.jtbi.2008.03.029 CrossRefGoogle Scholar
  6. 6.
    Crampin, E.J., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., Tawhai, M.: Computational physiology and the physiome project. Exp. Physiol. 89(1), 1–26 (2004). http://dx.doi.org/10.1113/expphysiol.2003.026740 CrossRefGoogle Scholar
  7. 7.
    Dongarra, J., Gates, M., Haidar, A., Jia, Y., Kabir, K., Luszczek, P., Tomov, S.: Portable HPC programming on intel many-integrated-core hardware with MAGMA port to Xeon Phi. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013, Part I. LNCS, vol. 8384, pp. 571–581. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Geuzaine, C., Remacle, J.F.: GMSH: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79(11), 1309–1331 (2009). http://dx.doi.org/10.1002/nme.2579 MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Katsnelson, L.B., Vikulova, N.A., Kursanov, A.G., Solovyova, O.E., Markhasin, V.S.: Electro-mechanical coupling in a one-dimensional model of heart muscle fiber. Russ. J. Numer. Anal. Math. Modell. 29(5), 275–284 (2014)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kohl, P., Noble, D.: Systems biology and the virtual physiological human. Mol. Syst. Biol. 5(1), 292 (2009). http://dx.doi.org/10.1038/msb.2009.51 Google Scholar
  11. 11.
    Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg (2012) MATHGoogle Scholar
  12. 12.
    McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Efficient Computation. Elsevier, Waltham (2012) Google Scholar
  13. 13.
    Pfeiffer, E.R., Tangney, J.R., Omens, J.H., McCulloch, A.D.: Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. J. Biomech. Eng. 136(2), 021007 (2014)CrossRefGoogle Scholar
  14. 14.
    Pravdin, S., Berdyshev, V., Panfilov, A., Katsnelson, L., Solovyova, O., Markhasin, V.: Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. BioMed. Eng. Online 12(1), 54 (2013). http://www.biomedical-engineering-online.com/content/12/1/54 CrossRefGoogle Scholar
  15. 15.
    Pravdin, S.F., Dierckx, H., Katsnelson, L.B., Solovyova, O., Markhasin, V.S., Panfilov, A.V.: Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture. PLoS ONE 9(5), e93617 (2014). http://dx.doi.org/10.1371/journal.pone.0093617 CrossRefGoogle Scholar
  16. 16.
    Solovyova, O., Katsnelson, L., Konovalov, P., Kursanov, A., Vikulova, N., Kohl, P., Markhasin, V.: The cardiac muscle duplex as a method to study myocardial heterogeneity. Prog. Biophys. Mol. Biol. 115(23), 115–128 (2014). http://www.sciencedirect.com/science/article/pii/S007961071400073X. Novel Technologies as Drivers of Progress in Cardiac BiophysicsCrossRefGoogle Scholar
  17. 17.
    Solovyova, O.E., Markhasin, V.S., Katsnelson, L.B., Sulman, T.B., Vasilyeva, A.D., Kursanov, A.G.: Mathematical Modeling of Living Systems. Urals University Press, Ekaterinburg (2013) Google Scholar
  18. 18.
    Zarestky, J., Bangerth, W.: Teaching high performance computing: Lessons from a flipped classroom, project-based course on finite element methods. In: Proceedings of the Workshop on Education for High-Performance Computing, EduHPC 2014, pp. 34–41. IEEE Press, Piscataway (2014). http://dx.doi.org/10.1109/EduHPC.2014.10

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andrey Sozykin
    • 1
    • 2
  • Mikhail Chernoskutov
    • 1
    • 2
  • Anton Koshelev
    • 1
    • 2
  • Vladimir Zverev
    • 1
    • 2
  • Konstantin Ushenin
    • 1
    • 2
  • Olga Solovyova
    • 1
    • 2
    • 3
  1. 1.Institute of Mathematics and Mechanics UrB RASEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia
  3. 3.Institute of Immunology and Physiology UrB RASEkaterinburgRussia

Personalised recommendations