Large-Scale Agent-Based Modeling with Repast HPC: A Case Study in Parallelizing an Agent-Based Model

  • Nicholson CollierEmail author
  • Jonathan Ozik
  • Charles M. Macal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)


We present a case study for parallelizing a large-scale epidemiologic ABM developed with Repast HPC, the Chicago Social Interaction Model (chiSIM). The original serial model is a CA-MRSA model which tracks CA-MRSA transmission dynamics and infection in Chicago, and represents the spread of CA-MRSA in the population of Chicago. We utilize both within compute node parallelization using the OpenMP toolkit and distributed parallelization across multiple processes using MPI. The combined approach yields a 1350 % increase in run time performance utilizing 128 compute nodes.


Agent-based modeling ABMS Repast HPC Parallel simulation Distributed simulation High performance computing 



This work is supported by the U.S. Department of Energy under contract number DE-AC02-06CH11357 and National Science Foundation (NSF) RAPID Award DEB-1516428.This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility.The Chicago MRSA ABM was developed with support from the MIDAS Program, NIH/National Institute of General Medical Sciences, grant U01GM087729.


  1. 1.
    Thiele, J.C., Kurth, W., Grimm, V.: Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and R. J. Artif. Soc. Soc. Simul. 17(3), 11 (2014)Google Scholar
  2. 2.
  3. 3.
    Macal, C.M., North, M.J., Collier, N.T., Dukic, V.M., Wegener, D.T., David, M.Z., Daum, R.S., Schumm, P., Evans, J.A., Wilder, J.R., Miller, L.G., Eells, S.J., Lauderdale, D.S.: Modeling the transmission of community-associated methicillin-resistant Staphylococcus aureus: a dynamic agent-based simulation. J. Transl. Med. 12, 124 (2014)CrossRefGoogle Scholar
  4. 4.
    Chambers, H.F., Deleo, F.R.: Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7(9), 629–641 (2009)CrossRefGoogle Scholar
  5. 5.
    Dukic, V.M., Lauderdale, D.S., Wilder, J., Daum, R.S., David, M.Z.: Epidemics of community-associated methicillin-resistant Staphylococcus aureus in the United States: a meta-analysis. PLoS One. 8(1), E52722 (2013)CrossRefGoogle Scholar
  6. 6.
    Moran, G.J., Krishnadasan, A., Gorwitz, R.J., Fosheim, G.E., McDougal, L.K., Carey, R.B., Talan, D.A.: Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 355(7), 666–674 (2006)CrossRefGoogle Scholar
  7. 7.
    Klevens, R.M., Morrison, M.A., Nadle, J., Petit, S., Gershman, K., Ray, S., Harrison, L.H., Lynfield, R., Dumyati, G., Townes, J.M., Craig, A.S., Zell, E.R., Fosheim, G.E., McDougal, L.K., Carey, R.B., Fridkin, S.K.: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15), 1763–1771 (2007)CrossRefGoogle Scholar
  8. 8.
    Wheaton, W.D., Cajka, J.C., Chasteen, B.M., Wagener, D.K., Cooley, P.C., Ganapathi, L., Roberts, D.J., Allpress, J.L.: Synthesized Population Databases: A US Geospatial Database for Agent-Based Models. RTI Press, Durham (2009). Publication No MR-0010-0905CrossRefGoogle Scholar
  9. 9.
    Ozik, J., Collier, N.T., Murphy, J.T., North, M.J.: The ReLogo agent-based modeling language. In: Proceedings Of The WSC 2013, Washington, D.C. (2013Google Scholar
  10. 10.
    Collier, N., North, M.: Parallel agent-based simulation with repast for high performance computing. Simulation 89(10), 1215–1235 (2012)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    OpenMP specification home page. Accessed 1 Jun 2015
  13. 13.
    MPI standard official website. Accessed 1 Jun 2015
  14. 14.
    Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    METIS home page. Accessed 1 Jun 2015
  16. 16.
    Shende, S., Malony, A.D.: TAU: the TAU parallel performance system. Int. J. High Perform. Comput. Appl. 20(2), 287–311 (2006)CrossRefGoogle Scholar
  17. 17.
    TAU home page, Accessed 1 Jun 2015

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicholson Collier
    • 1
    • 2
    Email author
  • Jonathan Ozik
    • 1
    • 2
  • Charles M. Macal
    • 1
  1. 1.Global Security SciencesArgonne National LaboratoryArgonneUSA
  2. 2.Computation InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations