Road Network Simulation Using FLAME GPU

  • Peter HeywoodEmail author
  • Paul Richmond
  • Steve Maddock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)


Demand for high performance road network simulation is increasing due to the need for improved traffic management to cope with the globally increasing number of road vehicles and the poor capacity utilisation of existing infrastructure. This paper demonstrates FLAME GPU as a suitable Agent Based Simulation environment for road network simulations, capable of coping with the increasing demands on road network simulation. Gipps’ car following model is implemented and used to demonstrate the performance of simulation as the problem size is scaled. The performance of message communication techniques has been evaluated to give insight into the impact of runtime generated data structures to improve agent communication performance. A custom visualisation is demonstrated for FLAME GPU simulations and the techniques used are described.


Parallel agent based simulation FLAME GPU Transport network Performance scaling Visualisation 


  1. 1.
  2. 2.
    Simple DirectMedia Layer (libSDL).
  3. 3.
    Algers, S., Bernauer, E., Boero, M., Breheret, L., Di Taranto, C., Dougherty, M., Fox, K., Gabard, J.F.: Review of micro-simulation models. Institute for Transport Studies (1997)Google Scholar
  4. 4.
    Bell, M.C., Galatioto, F., Giuffrè, T., Tesoriere, G.: Novel application of red-light runner proneness theory within traffic microsimulation to an actual signal junction. Accid. Anal. Prev. 46, 26–36 (2012)CrossRefGoogle Scholar
  5. 5.
    Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. 99(suppl 3), 7280–7287 (2002)CrossRefGoogle Scholar
  6. 6.
    Charypar, D., Axhausen, K.W., Nagel, K.: Event-driven queue-based traffic flow microsimulation. Transp. Res. Rec. J. Transp. Res. Board 2003(1), 35–40 (2007)CrossRefGoogle Scholar
  7. 7.
    Charypar, D., Nagel, K.: Generating complete all-day activity plans with genetic algorithms. Transportation 32(4), 369–397 (2005)CrossRefGoogle Scholar
  8. 8.
    Ciuffo, B., Punzo, V., Montanino, M.: Thirty years of gipps’ car-following model. Transp. Res. Rec. J. Transp. Res. Board 2315(1), 89–99 (2012)CrossRefGoogle Scholar
  9. 9.
    García, A., Torres, A.J., Romero, M.A., Moreno, A.T.: Traffic microsimulation study to evaluate the effect of type and spacing of traffic calming devices on capacity. Procedia-Soc. Behav. Sci. 16, 270–281 (2011)CrossRefGoogle Scholar
  10. 10.
    Gipps, P.G.: A behavioural car-following model for computer simulation. Transp. Res. Part B Methodological 15(2), 105–111 (1981)CrossRefGoogle Scholar
  11. 11.
    Gipps, P.G.: A model for the structure of lane-changing decisions. Transp. Res. Part B: Methodological 20(5), 403–414 (1986)CrossRefGoogle Scholar
  12. 12.
    Keenan, D.: M 62-m 1 interchange- a combined transyt/vissim micro-simulation assessment. Traffic Engi.+Control 46(5), 178–187 (2005)Google Scholar
  13. 13.
    Kesting, A., Treiber, M., Helbing, D.: General lane-changing model mobil for car-following models. Transp. Res. Rec. J. Transp. Res. Board 1999(1), 86–94 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, G.: A generalization of linear car-following theory. Oper. Res. 14(4), 595–606 (1966)CrossRefGoogle Scholar
  15. 15.
    Nagel, K., Rickert, M.: Parallel implementation of the transims micro-simulation. Parallel Comput. 27(12), 1611–1639 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Neffendorf, H., Fletcher, G., North, R., Worsley, T., Bradley, R.: Modelling for intelligent mobility (Feb 2015)Google Scholar
  17. 17.
    Nvidia, C.: CUDA kepler tuning guide - read-only data cache.
  18. 18.
    Nvidia, C.: Cuda c programming guide (2015). Accessed 30 Mar 2015
  19. 19.
    Panis, L.I., Broekx, S., Liu, R.: Modelling instantaneous traffic emission and the influence of traffic speed limits. Sci. Total Environ. 371(1), 270–285 (2006)CrossRefGoogle Scholar
  20. 20.
    Raney, B., Cetin, N., Völlmy, A., Vrtic, M., Axhausen, K., Nagel, K.: An agent-based microsimulation model of swiss travel: first results. Netw. Spat. Econ. 3(1), 23–41 (2003)CrossRefGoogle Scholar
  21. 21.
    Richmond, P.: Flame gpu technical report and user guide. Technical report CS-11-03, Technical report. University of Sheffield, Department of Computer Science (2011)Google Scholar
  22. 22.
    Schulze, T., Fliess, T.: Urban traffic simulation with psycho-physical vehicle-following models. In: Proceedings of the 29th conference on Winter simulation, pp. 1222–1229. IEEE Computer Society (1997)Google Scholar
  23. 23.
    Sommer, C., Yao, Z., German, R., Dressler, F.: On the need for bidirectional coupling of road traffic microsimulation and network simulation. In: Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models, pp. 41–48. ACM (2008)Google Scholar
  24. 24.
    Strippgen, D., Nagel, K.: Multi-agent traffic simulation with cuda. In: International Conference on High Performance Computing & Simulation, HPCS 2009, pp. 106–114. IEEE (2009)Google Scholar
  25. 25.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62(2), 1805 (2000)CrossRefGoogle Scholar
  26. 26.
    UK Department for Transport: Quarterly Road Traffic Estimates: Great Britain Quarter 4 (October - December) 2014, Februry 2015.
  27. 27.
    Wang, K., Shen, Z.: A gpu based trafficparallel simulation module of artificial transportation systems. In: 2012 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 160–165. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations