Advertisement

Behavioral Spherical Harmonics for Long-Range Agents’ Interaction

  • Biagio Cosenza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)

Abstract

We introduce behavioral spherical harmonic (BSH), a novel approach to efficiently and compactly represent the directional-dependent behavior of agent. BSH is based on spherical harmonics to project the directional information of a group of multiple agents to a vector of few coefficients; thus, BSH drastically reduces the complexity of the directional evaluation, as it requires only few agent-group interactions instead of multiple agent-agent ones. We show how the BSH model can efficiently model intricate behaviors such as long-range collision avoidance, reaching interactive performance and avoiding agent congestion on challenging multi-groups scenarios.

Furthermore, we demonstrate how both the innate parallelism and the compact coefficient representation of the BSH model are well suited for GPU architectures, showing performance analysis of our OpenCL implementation.

Keywords

Spherical harmonics Behavioral model Agent-based simulation Long-distance interaction Collision avoidance GPGPU 

References

  1. 1.
    Cabral, B., Max, N., Springmeyer, R.: Bidirectional reflection functions from surface bump maps. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 273–281 (1987)Google Scholar
  2. 2.
    Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A framework for distributing agent-based simulations. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part I. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Cordasco, G., Milone, F., Spagnuolo, C., Vicidomini, L.: Exploiting D-Mason on parallel platforms: a novel communication strategy. In: Lopes, L., Žilinskas, J., Costan, A., Cascella, R.G., Kecskemeti, G., Jeannot, E., Alexander, M., Hunold, S., Scott, S.L., Lankes, S., Lengauer, C., Carretero, J., Breitbart, J., Cannataro, M., Ricci, L., Benkner, S., Petit, S., Scarano, V., Gracia, J. (eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp. 407–417. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Cosenza, B., Cordasco, G., Chiara, R.D., Scarano, V.: Distributed load balancing for parallel agent-based simulations. In: 19th International Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 62–69 (2011)Google Scholar
  5. 5.
    Erra, U., Frola, B., Scarano, V.: BehaveRT: a GPU-based library for autonomous characters. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 194–205. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Erra, U., Frola, B., Scarano, V., Couzin, I.: An efficient GPU implementation for large scale individual-based simulation of collective behavior. In: International Workshop on High Performance Computational Systems Biology (HIBI), pp. 51–58 (2009)Google Scholar
  7. 7.
    Golas, A., Narain, R., Curtis, S., Lin, M.C.: Hybrid long-range collision avoidance for crowd simulation. IEEE Trans. Visual. Comput. Graphics 20(7), 1022–1034 (2014)CrossRefGoogle Scholar
  8. 8.
    Grasso, I., Ritter, M., Cosenza, B., Benger, W., Hofstetter, G., Fahringer, T.: Point distribution tensor computation on heterogeneous systems. Procedia Comput. Sci. (ICCS) 51, 160–169 (2015)CrossRefGoogle Scholar
  9. 9.
    Green, R.: Spherical harmonic lighting: the gritty details. In: GDC, vol. 56 (2003)Google Scholar
  10. 10.
    Green, S.: Particle simulation using cuda. Technical report, NVIDIA (2010)Google Scholar
  11. 11.
    Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 119–128 (2010)Google Scholar
  12. 12.
    Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.: Clearpath: highly parallel collision avoidance for multi-agent simulation. In: ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 177–187. SCA (2009)Google Scholar
  13. 13.
    Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-time indirect illumination. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 99–107. I3D (2010)Google Scholar
  14. 14.
    Khronos Group: Khronos Group. The OpenCL 2.0 specification (2014)Google Scholar
  15. 15.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRefGoogle Scholar
  16. 16.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM SIGGRAPH Asia, pp. 122:1–122:8 (2009)Google Scholar
  17. 17.
    North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1), 1–25 (2006)CrossRefGoogle Scholar
  18. 18.
    Passos, E.B., Joselli, M., Zamith, M., Clua, E.W.G., Montenegro, A., Conci, A., Feijo, B.: A bidimensional data structure and spatial optimization for supermassive crowd simulation on GPU. Comput. Entertain. 7(4), 60:1–60:15 (2010)Google Scholar
  19. 19.
    Richmond, P., Walker, D.C., Coakley, S., Romano, D.M.: High performance cellular level agent-based simulation with FLAME for the GPU. Briefings Bioinform. 11(3), 334–347 (2010)CrossRefGoogle Scholar
  20. 20.
    Sloan, P.P.: Stupid Spherical Harmonics (SH) Tricks (2008)Google Scholar
  21. 21.
    Sloan, P.P.: Efficient spherical harmonic evaluation. J. Comput. Graphics Tech. (JCGT) 2(2), 84–90 (2013)Google Scholar
  22. 22.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Embedded Systems Architecture (AES), Department of Computer Engineering and Microelectronics (TIME)Technische Universität BerlinBerlinGermany

Personalised recommendations