Advertisement

Superoptimizing Memory Subsystems for Multiple Objectives

  • Joseph G. Wingbermuehle
  • Ron K. Cytron
  • Roger D. Chamberlain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)

Abstract

We consider the automatic determination of application-specific memory subsystems via superoptimization, with the goals of reducing memory access time and of minimizing writes. The latter goal is of concern for memories with limited write endurance. Our subsystems out-perform general-purpose memory subsystems in terms of performance, number of writes, or both.

Keywords

Main Memory Design Space Exploration Threshold Acceptance Memory Subsystem Cache Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In: ACM SIGPLAN Notices, vol. 41, pp. 394–403. ACM (2006)Google Scholar
  2. 2.
    Bansal, S., Aiken, A.: Binary translation using peephole superoptimizers. In: Proceedings of 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), vol. 8, pp. 177–192, December 2008Google Scholar
  3. 3.
    Chen, Y.T., Cong, J., Reinman, G.: HC-Sim: a fast and exact L1 cache simulator with scratchpad memory co-simulation support. In: Proceedings of 9th International Conference on Hardware/Software Codesign and System Synthesis, pp. 295–304. IEEE (2011)Google Scholar
  4. 4.
    Choi, Y.k., Cong, J., Wu, D.: FPGA implementation of EM algorithm for 3D CT reconstruction. In: Proceedings of 22nd Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 157–160. IEEE (2014)Google Scholar
  5. 5.
    Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ghosh, A., Givargis, T.: Cache optimization for embedded processor cores: an analytical approach. ACM Trans. Des. Autom. Electron. Syst. 9(4), 419–440 (2004)CrossRefGoogle Scholar
  7. 7.
    Gordon-Ross, A., Vahid, F., Dutt, N.: Automatic tuning of two-level caches to embedded applications. In: Proceedings of the Conference on Design, Automation and Test in Europe, p. 10208 (2004)Google Scholar
  8. 8.
    Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: A free, commercially representative embedded benchmark suite. In: Proceedings of 4th International Workshop on Workload Characterization, pp. 3–14 (2001)Google Scholar
  9. 9.
    Hu, T.C., Kahng, A.B., Tsao, C.W.A.: Old bachelor acceptance: a new class of non-monotone threshold accepting methods. ORSA J. Comput. 7(4), 417–425 (1995)MATHCrossRefGoogle Scholar
  10. 10.
    Kin, J., Gupta, M., Mangione-Smith, W.H.: The filter cache: an energy efficient memory structure. In: Proceedings of 30th ACM/IEEE International Symposium on Microarchitecture, pp. 184–193. IEEE (1997)Google Scholar
  11. 11.
    Kultursay, E., Kandemir, M., Sivasubramaniam, A., Mutlu, O.: Evaluating STT-RAM as an energy-efficient main memory alternative. In: Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software, pp. 256–267. IEEE (2013)Google Scholar
  12. 12.
    Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scalable DRAM alternative. ACM SIGARCH Comput. Archit. News 37(3), 2–13 (2009)CrossRefGoogle Scholar
  13. 13.
    Mandelman, J.A., Dennard, R.H., Bronner, G.B., DeBrosse, J.K., Divakaruni, R., Li, Y., Radens, C.J.: Challenges and future directions for the scaling of dynamic random-access memory (DRAM). IBM J. Res. Dev. 46(2.3), 187–212 (2002)CrossRefGoogle Scholar
  14. 14.
    Massalin, H.: Superoptimizer: a look at the smallest program. In: Proceedings of 2nd International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 122–126 (1987)Google Scholar
  15. 15.
    Naz, A.: Split array and scalar data caches: a comprehensive study of data cache organization. Ph.D. thesis, Univ. of North Texas (2007)Google Scholar
  16. 16.
    Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. In: Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 89–100 (2007)Google Scholar
  17. 17.
    Palermo, G., Silvano, C., Zaccaria, V.: Discrete particle swarm optimization for multi-objective design space exploration. In: Proceedings of 11th Conference on Digital System Design Architectures, Methods and Tools, pp. 641–644. IEEE (2008)Google Scholar
  18. 18.
    Panda, R.P., Dutt, N.D., Nicolau, A., Catthoor, F., Vandecappelle, A., Brockmeyer, E., Kulkarni, C., De Greef, E.: Data memory organization and optimizations in application-specific systems. IEEE Des. Test Comput. 18(3), 56–68 (2001)CrossRefGoogle Scholar
  19. 19.
    Stuecheli, J., Kaseridis, D., Hunter, H.C., John, L.K.: Elastic refresh: Techniques to mitigate refresh penalties in high density memory. In: Proceedings of 43rd IEEE/ACM International Symposium on Microarchitecture, pp. 375–384 (2010)Google Scholar
  20. 20.
    Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: CACTI 5.1. HP Laboratories 2, April 2008Google Scholar
  21. 21.
    Wingbermuehle, J.G., Cytron, R.K., Chamberlain, R.D.: Superoptimization of memory subsystems. In: Proceedings of 15th Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), pp. 145–154, June 2014Google Scholar
  22. 22.
    Wingbermuehle, J.G., Cytron, R.K., Chamberlain, R.D.: Superoptimized memory subsystems for streaming applications. In: Proceedings of 23rd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 126–135, February 2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Joseph G. Wingbermuehle
    • 1
  • Ron K. Cytron
    • 1
  • Roger D. Chamberlain
    • 1
  1. 1.Department of Computer Science and EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations