Interdisciplinary Practical Course on Parallel Finite Element Method Using HiFlow\(^{3}\)

  • Markus Hoffmann
  • Simon Gawlok
  • Eva Treiber
  • Wolfgang Karl
  • Vincent Heuveline
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)

Abstract

In many scientific fields one faces partial differential equations that have to be solved numerically. Applying the widely-used finite element method (FEM) leads to huge systems of equations whose solutions often require parallel computing. The practical course presented in this paper aims at introducing the FEM as well as the concept of parallel computing to students with the help of a FEM library, in this case HiFlow\(^3\). To achieve this goal, the students work in interdisciplinary groups on explicit problems originating from different scientific fields. In that way they expand and deepen both their theoretical knowledge concerning numerical mathematics and their practical skills in programming and using HiFlow\(^3\).

References

  1. 1.
    Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Web page (2014). http://www.mcs.anl.gov/petsc
  2. 2.
    Balay, S., Abhyankars, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zhang, H.: PETSc Users Manual. Argonne National Laboratory, ANL-95/11 - Revision 3.5 (2014). http://www.mcs.anl.gov/petsc
  3. 3.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997)CrossRefGoogle Scholar
  4. 4.
    Heuveline, V., et. al.: HiFlow\(^{3}\): A hardware-aware parallel finite element package. In: Brunst, H., Muller, M.S., Nagel, W.E., Resch, M.M., (eds.) Tools for High Performance Computing 2011, pp. 139–151. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Heuveline, V., Ketelaer, E., Ronnas, S., Schmidtobreick, M., Wlotzka, M.: Scalability Study of HiFlow\(^{3}\) based on a Fluid Flow Channel Benchmark. Preprint Series of the Engineering Mathematics and Computing Lab (EMCL) (2012)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mayer, J.: ILU++: A new software package for solving sparse linear systems with iterative methods. PAMM Proc. Appl. Math. Mech. 7, 2020123–2020124 (2007)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. ACM Queue 6(2), 40–53 (2008)CrossRefGoogle Scholar
  15. 15.
    Saad, Y.: Iterative methods for sparse linear systems. 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)Google Scholar
  16. 16.
    Schroeder, W., et al.: The Visualization Toolkit, 3rd edn. Kitware, Inc. (2003)Google Scholar
  17. 17.
    Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (2010)Google Scholar
  18. 18.
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Markus Hoffmann
    • 1
  • Simon Gawlok
    • 2
  • Eva Treiber
    • 2
  • Wolfgang Karl
    • 1
  • Vincent Heuveline
    • 2
  1. 1.Institute of Computer Science & Engineering (ITEC), Chair for Computer Architecture and Parallel Processing (CAPP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR), Engineering Mathematics and Computing Lab (EMCL)Heidelberg UniversityHeidelbergGermany

Personalised recommendations