An Educational Module Illustrating How Sparse Matrix-Vector Multiplication on Parallel Processors Connects to Graph Partitioning

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9523)

Abstract

The transition from a curriculum without parallelism topics to a re-designed curriculum that incorporates such issues can be a daunting and time-consuming process. Therefore, it is beneficial to complement this process by gradually integrating elements from parallel computing into existing courses that were previously designed without parallelism in mind. As an example, we propose the multiplication of a sparse matrix by a dense vector on parallel computers with distributed memory. A novel educational module is introduced that illustrates the intimate connection between distributing the data of the sparse matrix-vector multiplication to parallel processes and partitioning a suitably defined graph. This web-based module aims at better involving undergraduate students in the learning process by a high level of interactivity. It can be integrated into any course on data structures with minimal effort by the instructor.

References

  1. 1.
    Adams, J.C.: Injecting parallel computing into CS2. In: Proceedings of the 45th ACM Technical Symposium on Computer Science Education, SIGCSE 2014, pp. 277–282. ACM, New York (2014). http://doi.acm.org/10.1145/2538862.2538883
  2. 2.
    Bischof, C.H., Bücker, H.M., Henrichs, J., Lang, B.: Hands-on training for undergraduates in high-performance computing using Java. In: Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 306–315. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  3. 3.
    Brown, R., Shoop, E.: Modules in community: injecting more parallelism into computer science curricula. In: Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, SIGCSE 2011, pp. 447–452. ACM, New York (2011). http://doi.acm.org/10.1145/1953163.1953293
  4. 4.
    Bücker, H.M., Lang, B., Bischof, C.H.: Teaching different parallel programming paradigms using Java. In: Proceedings of the 3rd Annual Workshop on Java for High Performance Computing, Sorrento, Italy, 17 June 2001, pp. 73–81 (2001)Google Scholar
  5. 5.
    Bücker, H.M., Lang, B., Bischof, C.H.: Parallel programming in computational science: an introductory practical training course for computer science undergraduates at Aachen University. Future Gener. Comput. Syst. 19(8), 1309–1319 (2003)CrossRefGoogle Scholar
  6. 6.
    Bücker, H.M., Lang, B., Pflug, H.-J., Vehreschild, A.: Threads in an undergraduate course: a Java example illuminating different multithreading approaches. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3044, pp. 882–891. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Bücker, H.M., Rostami, M.A.: Interactively exploring the connection between nested dissection orderings for parallel Cholesky factorization and vertex separators. In: IEEE 28th International Parallel and Distributed Processing Symposium. IPDPS 2014 Workshops, Phoenix, Arizona, USA, 19–23 May 2014, pp. 1122–1129. IEEE Computer Society, Los Alamitos (2014)Google Scholar
  8. 8.
    Bücker, H.M., Rostami, M.A.: Interactively exploring the connection between bidirectional compression and star bicoloring. In: Koziel, S., Leifsson, L., Lees, M., Krzhizhanovskaya, V.V., Dongarra, J., Sloot, P.M.A. (eds.) International Conference on Computational Science, ICCS 2015 – Computational Science at the Gates of Nature, Reykjavík, Iceland, 1–3 June 2015. Elsevier (2015). Procedia Comput. Sci. 51, 1917–1926Google Scholar
  9. 9.
    Bücker, H.M., Rostami, M.A., Lülfesmann, M.: An interactive educational module illustrating sparse matrix compression via graph coloring. In: 2013 International Conference on Interactive Collaborative Learning (ICL), Proceedings of the 16th International Conference on Interactive Collaborative Learning, Kazan, Russia, 25–27 September 2013, pp. 330–335. IEEE, Piscataway (2013)Google Scholar
  10. 10.
    Bunde, D.P., Mache, J., Drake, P.: Adding parallel Haskell to the undergraduate programming language course. J. Comput. Sci. Coll. 30(1), 181–189 (2014). http://dl.acm.org/citation.cfm?id=2667369.2667403 Google Scholar
  11. 11.
    Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst. 10(7), 673–693 (1999)CrossRefGoogle Scholar
  12. 12.
    Çatalyürek, Ü.V., Uçar, B., Aykanat, C.: Hypergraph partitioning. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 871–881. Springer, New York (2011)Google Scholar
  13. 13.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)MATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)MATHGoogle Scholar
  15. 15.
    George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs (1981)MATHGoogle Scholar
  16. 16.
    Grossman, D., Anderson, R.E.: Introducing parallelism and concurrency in the data structures course. In: Proceedings of the 43rd ACM Technical Symposium on Computer Science Education, SIGCSE 2012, pp. 505–510. ACM, New York (2012). http://doi.acm.org/10.1145/2157136.2157285
  17. 17.
    Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Parallel Comput. 26(2), 1519–1534 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lülfesmann, M., Leßenich, S.R., Bücker, H.M.: Interactively exploring elimination orderings in symbolic sparse Cholesky factorization. In: International Conference on Computational Science, ICCS 2010. Elsevier (2010). Procedia Comput. Sci. 1(1), 867–874Google Scholar
  19. 19.
    Osterby, O., Zlatev, Z.: Direct Methods for Sparse Matrices. Springer, New York (1983)MATHCrossRefGoogle Scholar
  20. 20.
    Pissanetzky, S.: Sparse Matrix Technology. Academic Press, New York (1984)MATHGoogle Scholar
  21. 21.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, Second edn. SIAM, Philadelphia (2003)MATHCrossRefGoogle Scholar
  22. 22.
    Uçar, B., Aykanat, C.: Revisiting hypergraph models for sparse matrix partitioning. SIAM Rev. 49(4), 595–603 (2007). http://dx.doi.org/10.1137/060662459 MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Computer ScienceFriedrich Schiller UniversityJenaGermany
  2. 2.Michael Stifel Center Jena for Data-Driven and Simulation ScienceJenaGermany

Personalised recommendations