Skip to main content

Autoregressive Conditional Duration Model with an Extended Weibull Error Distribution

  • Chapter
  • First Online:
Causal Inference in Econometrics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 622))

Abstract

Trade duration and daily range data often exhibit asymmetric shape with long right tail. In analysing the dynamics of these positively valued time series under autoregressive conditional duration (ACD) models, the choice of the conditional distribution for innovations has posed challenges. A suitably chosen distribution, which is capable of capturing unique characteristics inherent in these data, particularly the heavy tailedness, is proved to be very useful. This paper introduces a new extension to the class of Weibull distributions, which is shown to perform better than the existing Weibull distribution in ACD and CARR modelling. By incorporating an additional shape parameter, the Weibull distribution is extended to the extended Weibull (EW) distribution to enhance its flexibility in the tails. An MCMC based sampling scheme under a Bayesian framework is employed for statistical inference and its performance is demonstrated in a simulation experiment. Empirical application is based on trade duration and daily range data from the Australian Securities Exchange (ASX). The performance of EW distribution, in terms of model fit, is assessed in comparison to two other frequently used error distributions, the exponential and Weibull distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pacurar, M.: Autoregressive conditional duration models in finance: a survey of the theoretical and empirical literature. J. Econ. Surv. 22(4), 711–751 (2008)

    Article  Google Scholar 

  2. Engle, R.F., Russell, J.R.: Autoregressive conditional duration: a new model for irregularly spaced transaction data. Econometrica, pp. 1127–1162 (1998)

    Google Scholar 

  3. Grammig, J., Maurer, K.-O.: Non-monotonic hazard functions and the autoregressive conditional duration model. Econom. J. 3(1), 16–38 (2000)

    Article  MATH  Google Scholar 

  4. Bhatti, C.R.: The birnbaum-saunders autoregressive conditional duration model. Math. Comput. Simul. 80(10), 2062–2078 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauwens, L., Giot, P., Grammig, J., Veredas, D.: A comparison of financial duration models via density forecasts. Int. J. Forecast. 20(4), 589–609 (2004)

    Article  Google Scholar 

  6. Allen, D., Chan, F., McAleer, M., Peiris, S.: Finite sample properties of the qmle for the log-acd model: application to australian stocks. J. Econom. 147(1), 163–185 (2008)

    Article  MathSciNet  Google Scholar 

  7. Allen, D., Lazarov, Z., McAleer, M., Peiris, S.: Comparison of alternative acd models via density and interval forecasts: evidence from the australian stock market. Math. Comput. Simul. 79(8), 2535–2555 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Parkinson, M.: The extreme value method for estimating the variance of the rate of return. J. Bus. 61–65 (1980)

    Google Scholar 

  9. Chou, R.Y.: Forecasting financial volatilities with extreme values: the conditional autoregressive range (carr) model. J. Money, Credit Bank. 561–582 (2005)

    Google Scholar 

  10. Engle, R.: New frontiers for arch models. J. Appl. Econom. 17(5), 425–446 (2002)

    Article  Google Scholar 

  11. Carter, C.K., Kohn, R.: On gibbs sampling for state space models. Biometrika 81(3), 541–553 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  13. Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, C.W., So, M.K., Gerlach, R.H.: Assessing and testing for threshold nonlinearity in stock returns. Aust. N. Z. J. Stat. 47(4), 473–488 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gelman, A., Roberts, G., Gilks, W.: Efficient metropolis jumping rules. Bayesian Stat. 5(42), 599–608 (1996)

    MathSciNet  Google Scholar 

  16. Von Neumann, J.: 13. Various Techniques used in Connection with Random Digits (1951)

    Google Scholar 

  17. Smith, M., Kohn, R.: Nonparametric regression using bayesian variable selection. J. Econom. 75(2), 317–343 (1996)

    Article  MATH  Google Scholar 

  18. Wilk, M.B., Gnanadesikan, R.: Probability plotting methods for the analysis for the analysis of data. Biometrika 55(1), 1–17 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Boris Choy .

Editor information

Editors and Affiliations

Appendices

Appendix

Calculation of Moments and Main Characteristics for EW Distribution

Let X be a random variable following the EW distribution with parameters \(\lambda \), k and \(\gamma \). The distribution of X will be denoted as EW(\(\lambda \),k,\(\gamma \)) with the following pdf

$$\begin{aligned} \displaystyle f(x)= \left( 1+\frac{1}{\gamma ^k}\right) \frac{k}{\lambda ^k}x^{k-1}e^{-\left( \frac{x}{\lambda }\right) ^k}\left[ 1-e^{-\left( \frac{\gamma x}{\lambda }\right) ^k}\right] . \end{aligned}$$

1. Derivation of mean, E(X)

$$\begin{aligned} E(X) = \mu= & {} \int _{0}^{\infty }x f(x) dx \nonumber \\= & {} \frac{k}{\lambda ^k}\left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \int _{0}^{\infty }x^{k}e^{-\left( \frac{x}{\lambda }\right) ^k} dx -\int _{0}^{\infty }x^{k}e^{-\left( \frac{1+\gamma ^ k}{\lambda ^k}\right) \left( X\right) ^k}dx\right] \nonumber \\= & {} \lambda \left( 1+\frac{1}{\gamma ^{k}}\right) \varGamma \left( {1+\frac{1}{k}}\right) \left[ 1-\frac{1}{(1+{\gamma ^{k})}^{1+\frac{1}{k}}}\right] \nonumber \\= & {} \frac{\lambda }{k \gamma ^{k}}\varGamma \left( {\frac{1}{k}}\right) \left[ \frac{\left( 1+\gamma ^k\right) ^{1+\frac{1}{k}} - 1}{(1+\gamma ^k)^{\frac{1}{k}}}\right] \end{aligned}$$
(11)

2. Derivation of variance, Var(X)

$$\begin{aligned} Var(X)= & {} \sigma ^2 = E(X^2)-[E(X)]^2 \nonumber \\ E(X^2)= & {} \frac{k}{\lambda ^k}\left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \int _{0}^{\infty }x^{k+1}e^{-\left( \frac{x}{\lambda }\right) ^\alpha } dx -\int _{0}^{\infty }x^{k+1}e^{-\left( \frac{1+\gamma ^ k}{\lambda ^k}\right) \left( x\right) ^k}dx\right] \nonumber \\= & {} \lambda ^{2}\left( 1+\frac{1}{\gamma ^{k}}\right) \varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+\gamma ^{k})}^{1+\frac{2}{k}}}\right] \nonumber \\ \sigma ^2= & {} \lambda ^{2}\left( 1+\frac{1}{\gamma ^{k}}\right) \left\{ \varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+\gamma ^{k})}^{1+\frac{2}{k}}}\right] \right. \nonumber \\&-\left. \left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \varGamma \left( 1+\frac{1}{k}\right) \right] ^{2}\left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{1}{k}}}\right] ^{2}\right\} \end{aligned}$$
(12)

3. Derivation of skewness, Skew(X)

$$\begin{aligned} Skew(X)= & {} \rho = \frac{E\left[ X-E(X)\right] ^3}{\sigma ^3} =\frac{S_1}{S_2} \end{aligned}$$
(13)
$$\begin{aligned} \text {where}\quad E\left[ X-E(X)\right] ^3&= \frac{k}{\lambda ^k}\left( 1+\frac{1}{\gamma ^{k}}\right) \left( \int _{0}^{\infty }\left( x-\mu \right) ^3 x^{k-1}e^{-\left( \frac{x}{\lambda }\right) ^k} dx \right. \nonumber \\&\quad - \left. \int _{0}^{\infty }\left( x-\mu \right) ^3 x^{k-1}e^{-\left( \frac{1+\gamma ^ k}{\lambda ^k}\right) x^k}dx\right] , \nonumber \\ S_1&= \varGamma \left( 1+\frac{3}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+ \frac{3}{k}}}\right] \nonumber \\&\quad - \frac{3\mu }{\lambda }\varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{2}{k}}}\right] \nonumber \\&\quad + \frac{3\mu ^2}{\lambda ^2}\varGamma \left( 1+\frac{1}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{1}{k}}}\right] -\frac{\mu ^3}{\lambda ^3}\left( 1-\frac{1}{1+{\gamma ^{k}}}\right) , \nonumber \\ S_2&=\left[ 1+\frac{1}{\gamma ^{k}}\right] ^{1/2}\left\{ \varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{2}{k}}}\right] \right. \nonumber \\&\quad -\left. \left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \varGamma \left( 1+\frac{1}{k}\right) \right] ^2 \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{1}{k}}}\right] ^2\right\} ^{\frac{3}{2}}\nonumber \end{aligned}$$

4. Derivation of kurtosis, Kurt(X)

$$\begin{aligned} Kurt(X)= & {} \zeta = \frac{E\left[ X-E(X)\right] ^4}{\sigma ^4}=\frac{K_1}{K_2} \end{aligned}$$
(14)
$$\begin{aligned} \text {where}\quad E\left[ X-E(X)\right] ^4= & {} \frac{k}{\lambda ^k}\left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \int _{0}^{\infty }\left( x-\mu \right) ^4 x^{k-1}e^{-\left( \frac{x}{\lambda }\right) ^k} dx \right. \nonumber \\&- \left. \int _{0}^{\infty }\left[ x-\mu \right) ^4 x^{k-1}e^{-\left( \frac{1+\gamma ^ k}{\lambda ^k}\right) x^k}dx\right] , \nonumber \\ \end{aligned}$$
$$\begin{aligned} K_1= & {} \varGamma \left( 1+\frac{4}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{4}{k}}}\right] -\frac{4\mu }{\lambda }\varGamma \left( 1+\frac{3}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{3}{k}}}\right] \nonumber \\&+\frac{6\mu ^2}{\lambda ^2}\varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{2}{k}}}\right] -\frac{4\mu ^3}{\lambda ^3}\varGamma \left( 1+\frac{1}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{1}{k}}}\right] \nonumber \\&+\frac{\mu ^4}{\lambda ^4}\left( 1-\frac{1}{1+{\gamma ^{k}}}\right) ,\nonumber \\ K_2= & {} \left( 1+\frac{1}{\gamma ^{k}}\right) \left\{ \varGamma \left( 1+\frac{2}{k}\right) \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{2}{k}}}\right] \right. \nonumber \\&-\left. \left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \varGamma \left( 1+\frac{1}{k}\right) \right] ^2 \left[ 1-\frac{1}{{(1+{\gamma ^{k}})}^{1+\frac{1}{\alpha }}}\right] ^2\right\} ^{2} \nonumber \end{aligned}$$

5. Derivation of the cumulative distribution function, cdf, F(x)

$$\begin{aligned} F(x)= & {} \int _{0}^{x} f(y)dy \nonumber \\ \displaystyle= & {} \frac{k}{\lambda ^k}\left( 1+\frac{1}{\gamma ^{k}}\right) \left[ \int _{0}^{x}y^{k-1}e^{-\left( \frac{y}{\lambda }\right) ^k} dy -\int _{0}^{x}y^{k-1}e^{-\left( \frac{1+\gamma ^ k}{\lambda ^k}\right) y^k}dy\right] \nonumber \\= & {} 1 + \frac{1}{\gamma ^k}e^{-\left( \frac{x}{\lambda }\right) ^k}\left[ e^{-\left( \frac{\gamma x}{\lambda }\right) ^k}- 1 -\gamma ^k \right] \end{aligned}$$
(15)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yatigammana, R.P., Choy, S.T.B., Chan, J.S.K. (2016). Autoregressive Conditional Duration Model with an Extended Weibull Error Distribution. In: Huynh, VN., Kreinovich, V., Sriboonchitta, S. (eds) Causal Inference in Econometrics. Studies in Computational Intelligence, vol 622. Springer, Cham. https://doi.org/10.1007/978-3-319-27284-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27284-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27283-2

  • Online ISBN: 978-3-319-27284-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics