Skip to main content

Wall Modeled Large Eddy Simulation of a Delta Wing with Round Leading Edge

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics X

Abstract

We performed wall modeled large eddy simulation of the flow field around a delta wing with sweep angle of \(65^{\circ }\) and round leading edge at angles of attack of \(13^{\circ }\), \(18^{\circ }\), and \(23^{\circ }\). Qualitatively, the numerical simulations correctly predict the flow phenomena for all angles of attack considered. Quantitatively, the results show reasonable agreement with experimental measurements of steady and unsteady surface pressures, velocity distributions, and vortex breakdown position and frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breitsamter, C.: Turbulente Strömungsstrukturen an Flugzeugkonfigurationen mit Vorderkantenwirbeln. Herbert Utz Verlag Wissenschaft, München (1997)

    Google Scholar 

  2. Breitsamter, C.: Unsteady flow phenomena associated with leading-edge phenomena. Progr. Aerosp. Sci. 44, 48–65 (2008)

    Article  Google Scholar 

  3. Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A.: Wall modeling for implicit large-eddy simulation and immersed-interface methods. Theor. Comput. Fluid Dyn. 28, 1–21 (2014)

    Article  Google Scholar 

  4. Chu, J., Luckring, J.M.: Experimental surface pressure data obtained on \(65^{\circ }\) delta wing across Reynolds number and mach number ranges. NASA Technical Memorandum 4645, vol. 3. Medium-Radius Leading Edge (1996)

    Google Scholar 

  5. Crivellini, A., D’Alessandro, V., Bassi, F.: High-order discontinuous Galerkin RANS solutions of the incompressible flow over a delta wing. Comput. Fluids 88, 663–677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drougge, G.: The international vortex flow experiment for computer code validation. In: ICAS-Proceedings, Jerusalem (1988)

    Google Scholar 

  7. Furman, A., Breitsamter, C.: Investigation of flow phenomena on generic delta wing. In: ICAS-Proceedings, Hamburg (2006)

    Google Scholar 

  8. Furman, A., Breitsamter, C.: Experimental investigations on the VFE-2 configuration at TU Munich, Germany. NATO STO, Summary Report AVT-113, Chapter 21 (2009)

    Google Scholar 

  9. Grilli, M., Hickel, S., Hu, X.Y., Adams, N.A.: Conservative immersed boundary method for compressible viscous flows. Annual Report 2009 of the Sonderforschungsbereich/Transregio 40 (TRR40). Technische Universität München (2009)

    Google Scholar 

  10. Hickel, S., Adams, N.A., Domaradzki, J.A.: An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hickel, S., Egerer, C.P., Larsson, J.: Subgrid-scale modeling for implicit Large Eddy Simulation of compressible flows and shock turbulence interaction. Phys. Fluids (2014)

    Google Scholar 

  12. Hummel, D.: Effects of boundary layer formation on the vortical flow above slender delta wings. In: RTO Symposium on Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, Prague, Czech Republic (2004)

    Google Scholar 

  13. Hummel, D.: The international vortex flow experiment 2 (VFE-2): objectives and overview. NATO STO, Summary Report AVT-113, Chapter 17 (2009)

    Google Scholar 

  14. Luckring, J.M.: Initial experiments and analysis of blunt-edge vortex flows. NATO STO, Summary Report AVT-113, Chapter 18 (2009)

    Google Scholar 

  15. Mary, I.: Large Eddy simulation of vortex breakdown behind a delta wing. Int. J. Heat Fluid Flow 24, 596–605 (2003)

    Article  Google Scholar 

  16. Tangermann, E., Furman, A.: Detached Eddy simulation compared with wind tunnel results of a delta wing with sharp leading edge and vortex breakdown. In: 30th AIAA Applied Aerodynamics Conference (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Zwerger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zwerger, C., Hickel, S., Breitsamter, C., Adams, N. (2016). Wall Modeled Large Eddy Simulation of a Delta Wing with Round Leading Edge. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds) New Results in Numerical and Experimental Fluid Mechanics X. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-27279-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27279-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27278-8

  • Online ISBN: 978-3-319-27279-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics