On Degree Properties of Crossing-Critical Families of Graphs

  • Drago Bokal
  • Mojca Bračič
  • Marek Derňár
  • Petr HliněnýEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


Answering an open question from 2007, we construct infinite k-crossing-critical families of graphs which contain vertices of any prescribed odd degree, for sufficiently large k. From this we derive that, for any set of integers D such that \(\min (D)\ge 3\) and \(3,4\in D\), and for all sufficiently large k there exists a k-crossing-critical family such that the numbers in D are precisely the vertex degrees which occur arbitrarily often in any large enough graph in this family. We also investigate what are the possible average degrees of such crossing-critical families.


Crossing number Tile drawing Degree-universality Average degree Crossing-critical graph 


  1. 1.
    Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs.In: Theory and Practice of Combinatorics. North-Holland Mathematics Studies, vol.60, pp. 9–12. North-Holland (1982)Google Scholar
  2. 2.
    Bokal, D.: On the crossing numbers of cartesian products with paths. J. Comb. Theory Ser. B 97(3), 381–384 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bokal, D.: Infinite families of crossing-critical graphs with prescribed average degree and crossing number. J. Graph Theory 65(2), 139–162 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bokal, D., Chimani, M., Leaños, J.: Crossing number additivity over edge cuts. Eur. J. Comb. 34(6), 1010–1018 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bokal, D., Oporowski, B., Richter, R.B., Salazar, G.: Characterizing 2-crossing-critical graphs. Manuscript, 171 p. (2013)
  6. 6.
    Dvořák, Z., Mohar, B.: Crossing-critical graphs with large maximum degree. J. Comb. Theory, Ser. B 100(4), 413–417 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. Eur. J. Comb. 25(6), 785–792 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hernández-Vélez, C., Salazar, G., Thomas, R.: Nested cycles in large triangulations and crossing-critical graphs. J. Comb. Theory, Ser. B 102(1), 86–92 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hlinecaronný, P.: Crossing-critical graphs and path-width. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 102–114. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  10. 10.
    Hliněný, P.: Crossing-number critical graphs have bounded path-width. J. Comb. Theory Ser. B 88(2), 347–367 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hliněný, P.: New infinite families of almost-planar crossing-critical graphs. Electr. J. Comb. 15 R102 (2008)Google Scholar
  12. 12.
    Hliněný, P., Salazar, G.: Stars and bonds in crossing-critical graphs. J. Graph Theory 65(3), 198–215 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kochol, M.: Construction of crossing-critical graphs. Discrete Math. 66(3), 311–313 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Leighton, T.: Complexity Issues in VLSI. Foundations of Computing Series. MIT Press, Cambridge (1983) Google Scholar
  15. 15.
    Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs II: Planar tiles. J. Graph Theory 42(4), 332–341 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs I: General tiles. Australas. J. Comb. 30, 197–206 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Richter, R.B., Thomassen, C.: Minimal graphs with crossing number at least k. J. Comb. Theory Ser. B 58(2), 217–224 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Salazar, G.: Infinite families of crossing-critical graphs with given average degree. Discrete Math. 271(1–3), 343–350 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Širáň, J.: Infinite families of crossing-critical graphs with a given crossing number. Discrete Math. 48(1), 129–132 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Drago Bokal
    • 1
  • Mojca Bračič
    • 1
  • Marek Derňár
    • 2
  • Petr Hliněný
    • 2
    Email author
  1. 1.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations