Advertisement

A Million Edge Drawing for a Fistful of Dollars

  • Alessio Arleo
  • Walter Didimo
  • Giuseppe Liotta
  • Fabrizio Montecchiani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

In this paper we study the problem of designing a graph drawing algorithm for large graphs. The algorithm must be simple to implement and the computing infrastructure must not require major hardware or software investments. We report about the experimental analysis of a simple implementation of a spring embedder in Giraph, a vertex-centric open source framework for distributed computing. The algorithm is tested on real graphs of up to 1 million edges by using a cheap PaaS (Platform as a Service) infrastructure of Amazon. We can afford drawing graphs with about one million edges in about 8 min, by spending less than 1 USD per drawing for the cloud computing infrastructure.

Keywords

Cloud Computing Graphical Processing Unit Large Graph Cloud Computing Service Real Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  2. 2.
    Chae, S., Majumder, A., Gopi, M.: Hd-graphviz: highly distributed graph visualization on tiled displays. In: ICVGIP 2012, pp. 43:1–43:8. ACM (2012)Google Scholar
  3. 3.
    Ching, A.: Giraph: large-scale graph processing infrastructure on hadoop. In: Hadoop Summit (2011)Google Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River, NJ (1999)zbMATHGoogle Scholar
  5. 5.
    Eades, P.: A heuristic for graph drawing. Congr. Numerant. 42, 149–160 (1984)MathSciNetGoogle Scholar
  6. 6.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software, Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  7. 7.
    Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 90–101. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE Trans. Vis. Comput. Graph. 15(2), 249–261 (2009)CrossRefGoogle Scholar
  10. 10.
    Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. CRC Press, Boca Raton (2013)Google Scholar
  11. 11.
    Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010, pp. 135–146. ACM (2010)Google Scholar
  12. 12.
    McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Comput. Surv. 1(1), 1–35 (2015)CrossRefGoogle Scholar
  13. 13.
    Mueller, C., Gregor, D., Lumsdaine, A.: Distributed force-directed graph layout and visualization. In: EGPGV 2006, pp. 83–90. Eurographics (2006)Google Scholar
  14. 14.
    Sharma, P., Khurana, U., Shneiderman, B., Scharrenbroich, M., Locke, J.: Speeding up network layout and centrality measures for social computing goals. In: Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 244–251. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Tikhonova, A., Ma, K.: A scalable parallel force-directed graph layout algorithm. In: EGPGV 2008, pp. 25–32. Eurographics (2008)Google Scholar
  16. 16.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar
  17. 17.
    Vaquero, L.M., Cuadrado, F., Logothetis, D., Martella, C.: Adaptive partitioning for large-scale dynamic graphs. In: ICDCS 2014, pp. 144–153. IEEE (2014)Google Scholar
  18. 18.
    Yunis, E., Yokota, R., Ahmadia, A.: Scalable force directed graph layout algorithms using fast multipole methods. In: ISPDC 2012, pp. 180–187. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alessio Arleo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Fabrizio Montecchiani
    • 1
  1. 1.Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations