On Embeddability of Buses in Point Sets

  • Till BruckdorferEmail author
  • Michael Kaufmann
  • Stephen G. Kobourov
  • Sergey Pupyrev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the bus embeddability problem (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.


Integer Linear Programming Steiner Tree Restricted Version Euler Diagram Diagonal Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ada, A., Coggan, M., Marco, P.D., Doyon, A., Flookes, L., Heilala, S., Kim, E., Wing, J.L.O., Préville-Ratelle, L.F., Whitesides, S., Yu, N.: On bus graph realizability. In: Canadian Conference on Computational Geometry, pp. 229–232 (2007)Google Scholar
  2. 2.
    Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design study of LineSets, a novel set visualization technique. IEEE Trans. Visual. Comput. Graph. 17(12), 2259–2267 (2011)CrossRefGoogle Scholar
  3. 3.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform. Process. Lett. 8(3), 121–123 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bekos, M.A., Cornelsen, S., Fink, M., Hong, S.-H., Kaufmann, M., Nöllenburg, M., Rutter, I., Symvonis, A.: Many-to-one boundary labeling with backbones. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 244–255. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Bóna, M.: A survey of stack-sorting disciplines. Electron. J. Comb. 9(2), 16 (2003)Google Scholar
  6. 6.
    Bruckdorfer, T., Felsner, S., Kaufmann, M.: On the characterization of plane bus graphs. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 73–84. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Bruckdorfer, T., Kaufmann, M., Kobourov, S., Pupyrev, S.: On embeddability of buses in point sets. CoRR abs/1508.06760 (2015)
  8. 8.
    Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, H., Qiao, C., Zhou, F., Cheng, C.K.: Refined single trunk tree: A rectilinear Steiner tree generator for interconnect prediction. In: SLIP, pp. 85–89. ACM (2002)Google Scholar
  11. 11.
    Collins, C., Penn, G., Carpendale, T.: Bubble Sets: Revealing set relations with isocontours over existing visualizations. IEEE Trans. Visual. Comput. Graph. 15(6), 1009–1016 (2009)CrossRefGoogle Scholar
  12. 12.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Efrat, A., Hu, Y., Kobourov, S.G., Pupyrev, S.: MapSets: visualizing embedded and clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 452–463. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gurobi Optimization, I.: Gurobi optimizer reference manual (2015).
  18. 18.
    Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira, R.I., Speckmann, B.: Colored spanning graphs for set visualization. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 280–291. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–218. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  20. 20.
    Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hypergraphs and low-concurrency euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 265–276. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  21. 21.
    Knuth, D.E.: The Art of Computer Programming, Volume 1. Fundamental Algorithms, 3rd edn. Addison Wesley Longman Publishing Co., Inc., Redwood (1997) Google Scholar
  22. 22.
    Lengauer, T.: VLSI theory. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 835–868. Elsevier, Amsterdam (1990)Google Scholar
  23. 23.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: A hybrid set visualization technique. IEEE Trans. Visual. Comput. Graph. 19(11), 1846–1858 (2013)CrossRefGoogle Scholar
  25. 25.
    Pierrot, A., Rossin, D.: 2-stack pushall sortable permutations. CoRR abs/1303.4376 (2013)
  26. 26.
    Pierrot, A., Rossin, D.: 2-stack sorting is polynomial. In: Mayr, E.W., Portier, N. (eds.) Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 25, pp. 614–626. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  27. 27.
    Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Visual. Comput. Graph. 16(6), 1090–1099 (2010)CrossRefGoogle Scholar
  28. 28.
    Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of overlapping sets. Comput. Graph. Forum 28(3), 967–974 (2009)CrossRefGoogle Scholar
  29. 29.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1, 321–341 (1986)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Till Bruckdorfer
    • 1
    Email author
  • Michael Kaufmann
    • 1
  • Stephen G. Kobourov
    • 2
  • Sergey Pupyrev
    • 2
    • 3
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany
  2. 2.Department for Computer ScienceUniversity of ArizonaTucsonUSA
  3. 3.Institute of Mathematics and Computer ScienceUral Federal UniversityYekaterinburgRussia

Personalised recommendations