The Utility of Untangling

  • Vida DujmovićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


In this paper we show how techniques developed for untangling planar graphs by Bose et al. [Discrete & Computational Geometry 42(4): 570–585 (2009)] and Goaoc et al. [Discrete & Computational Geometry 42(4): 542–569 (2009)] imply new results about some recent graph drawing models. These include column planarity, universal point subsets, and partial simultaneous geometric embeddings (with or without mappings). Some of these results answer open problems posed in previous papers.



Many thanks to Pat Morin and David R. Wood for very helpful comments on the preliminary version of this article. Similarly, many thanks to the anonymous referees, especially the one who painstakingly corrected my ever random selection from \(\{the, a , \{\}\}\).The author is supported by NSERC and Ontario Ministry of Research and Innovation.


  1. 1.
    Abellanas, M., Hurtado, F., Ramos, P.: Tolerancia de arreglos de segmentos. In: Proceedings of VI Encuentros de Geometría Computacional, pp. 77–84 (1995)Google Scholar
  2. 2.
    Angelini, P., Binucci, C., Evans, W., Hurtado, F., Liotta, G., Mchedlidze, T., Meijer, H., Okamoto, Y.: Universal point subsets for planar graphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 423–432. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Angelini, P., Evans, W., Frati, F., Gudmundsson, J.: SEFE with no mapping via large induced outerplane graphs in plane graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 185–195. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barba, L., Hoffmann, M., Kusters, V.: Column planarity and partial simultaneous geometric embedding for outerplanar graphs. In: Abstracts of the 31st European Workshop on Computational Geometry (EuroCG), pp. 53–56 (2015)Google Scholar
  7. 7.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualizationpp, pp. 349–381. CRC Press, Boca Raton (2013)Google Scholar
  8. 8.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bose, P., Dujmović, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial bound for untangling geometric planar graphs. Discrete Comput. Geom. 42(4), 570–585 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  11. 11.
    Cano, J., Tóth, C.D., Urrutia, J.: Upper bound constructions for untangling planar geometric graphs. SIAM J. Discrete Math. 28(4), 1935–1943 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cardinal, J., Hoffmann, M., Kusters, V.: On universal point sets for planar graphs. In: Akiyama, J., Kano, M., Sakai, T. (eds.) TJJCCGG 2012. LNCS, vol. 8296, pp. 30–41. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point sets. In: Proceedings of the 8th Canadian Conference on Computational Geometry, (CCCG), pp. 312–318 (1996)Google Scholar
  14. 14.
    Cibulka, J.: Untangling polygons and graphs. Discrete Comput. Geom. 43(2), 402–411 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Di Giacomo, E., Didimo, W., van Kreveld, M.J., Liotta, G., Speckmann, B.: Matched drawings of planar graphs. J. Graph Algorithms Appl. 13(3), 423–445 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Di Giacomo, E., Liotta, G., Mchedlidze, T.: How many vertex locations can be arbitrarily chosen when drawing planar graphs? CoRR abs/1212.0804 (2012)Google Scholar
  17. 17.
    Di Giacomo, E., Liotta, G., Mchedlidze, T.: Lower and upper bounds for long induced paths in 3-connected planar graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 213–224. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 2(51), 161–166 (1950)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)MathSciNetGoogle Scholar
  20. 20.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Comput. Geom. 42(6–7), 704–721 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial simultaneous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 259–271. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of planar graphs. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 426–433 (1988)Google Scholar
  24. 24.
    Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C., Spillner, A., Wolff, A.: Untangling a planar graph. Discrete Comput. Geom. 42(4), 542–569 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points (solution to problem e3341). Am. Math. Monthly 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Untangling planar graphs from a specified vertex position - hard cases. Discrete Appl. Math. 159(8), 789–799 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–592 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ramos, P.: Tolerancia de estructuras geométricas y combinatorias. Ph.D. thesis, Universidad Politécnica de Madrid, Madrid, Spain (1995)Google Scholar
  30. 30.
    Ravsky, A., Verbitsky, O.: On collinear sets in straight-line drawings. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  31. 31.
    Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres. In: Aldous, D., Diaconis, P., Spencer, J., Steele, J.M. (eds.) Discrete probability and algorithms, pp. 111–131. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer Science and Electrical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations