Displaying User Behavior in the Collaborative Graph Visualization System OnGraX

  • Björn ZimmerEmail author
  • Andreas Kerren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)


The visual analysis of complex networks is a challenging task in many fields, such as systems biology or social sciences. Often, various domain experts work together to improve the analysis time or the quality of the analysis results. Collaborative visualization tools can facilitate the analysis process in such situations. We propose a new web-based visualization environment which supports distributed, synchronous and asynchronous collaboration. In addition to standard collaboration features like event tracking or synchronizing, our client/server-based system provides a rich set of visualization and interaction techniques for better navigation and overview of the input network. Changes made by specific analysts or even just visited network elements are highlighted on demand by heat maps. They enable us to visualize user behavior data without affecting the original graph visualization. We evaluate the usability of the heat map approach against two alternatives in a user experiment.


Information visualization Graph drawing Network exploration Interaction HCI CSCW Biological networks Heat maps 


  1. 1.
    KEGG: Kyoto Encyclopedia of Genes and Genomes. Accessed 12 August 2015
  2. 2.
    Alper, B.E., Henry Riche, N., Hollerer, T.: Structuring the space: a study on enriching node-link diagrams with visual references. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 1825–1834. ACM, New York (2014)Google Scholar
  3. 3.
    Chuah, M., Roth, S.: Visualizing common ground. In: Proceedings of the International Conference on Information Visualization (IV 2003), pp. 365–372. IEEE (2003)Google Scholar
  4. 4.
    Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv. 41(1), 2:1–2:31 (2009)Google Scholar
  5. 5.
    Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Visual Comput. Graphics 15(6), 1009–1016 (2009)CrossRefGoogle Scholar
  6. 6.
    Dieberger, A., Dourish, P., Höök, K.: Social navigation: techniques for building more usable systems. Interactions 7(6), 36–45 (2000)CrossRefGoogle Scholar
  7. 7.
    Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2), 179–184 (2009). doi: 10.1198/tas.2009.0033 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutwin, C., Greenberg, S.: Design for individuals, design for groups: tradeoffs between power and workspace awareness. In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work, CSCW 1998, pp. 207–216. ACM, New York (1998)Google Scholar
  9. 9.
    Heer, J., Agrawala, M.: Design considerations for collaborative visual analytics. Inf. Visual. 7(1), 49–62 (2008)CrossRefGoogle Scholar
  10. 10.
    Holten, D., van Wijk, J.J.: A user study on visualizing directed edges in graphs. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, p. 2299 (2009)Google Scholar
  11. 11.
    Isenberg, P., Elmqvist, N., Cernea, D., Scholtz, J., Ma, K.L., Hagen, H.: Collaborative visualization: definition, challenges, and research agenda. Inf. Visual. 10(4), 310–326 (2011)CrossRefGoogle Scholar
  12. 12.
    Isenberg, P., Fisher, D.: Collaborative brushing and linking for co-located visual analytics of document collections. Comput. Graphics Forum 28(3), 1031–1038 (2009)CrossRefGoogle Scholar
  13. 13.
    Isenberg, P., Tang, A., Carpendale, S.: An exploratory study of visual information analysis. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2008, pp. 1217–1226. ACM, New York (2008)Google Scholar
  14. 14.
    von Landesberger, T., Fiebig, S., Bremm, S., Kuijper, A., Fellner, D.W.: Interaction taxonomy for tracking of user actions in visual analytics applications. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 653–670. Springer, New York (2014)CrossRefGoogle Scholar
  15. 15.
    Mark, G., Kobsa, A.: The effects of collaboration and system transparency on cive usage: an empirical study and model. Presence Teleoper. Virtual Environ. 14(1), 60–80 (2005)CrossRefGoogle Scholar
  16. 16.
    Matejka, J., Grossman, T., Fitzmaurice, G.: Patina: dynamic heatmaps for visualizing application usage. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 3227–3236. ACM, New York (2013)Google Scholar
  17. 17.
    McKeon, M.: Harnessing the information ecosystem with wiki-based visualization dashboards. IEEE Trans. Vis. Comput. Graph. 15(6), 1081–1088 (2009)CrossRefGoogle Scholar
  18. 18.
    Pohl, M., Schmitt, M., Diehl, S.: Comparing the readability of graph layouts using eyetracking and task-oriented analysis. In: Computational Aesthetics, pp. 49–56 (2009)Google Scholar
  19. 19.
    Slocum, T.A., Mcmaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartography and Geovisualization, 3rd edn. Prentice Hall, Upper Saddle River (2008). (Prentice Hall Series in Geographic Information Science) Google Scholar
  20. 20.
    Viégas, A.B., Wattenberg, M., Ham, F.V., Kriss, J., Mckeon, M.: Many eyes: a site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 13(6), 1121–1128 (2007)CrossRefGoogle Scholar
  21. 21.
    Špakov, O., Miniotas, D.: Visualization of eye gaze data using heat maps. Electron. Electr. Eng. 2(2), 55–58 (2007)Google Scholar
  22. 22.
    Wallner, G., Kriglstein, S.: Plato: a visual analytics system for gameplay data. Comput. Graph. 38, 341–356 (2013)CrossRefGoogle Scholar
  23. 23.
    Zimmer, B., Kerren, A.: Applying heat maps in a web-based collaborative graph visualization. In: Poster Abstract, IEEE Information Visualization (InfoVis 2014) (2014)Google Scholar
  24. 24.
    Zimmer, B., Kerren, A.: Sensemaking and provenance in distributed collaborative node-link visualizations. In: Abstract Papers, IEEE VIS 2014 Workshop: Provenance for Sensemaking (2014)Google Scholar
  25. 25.
    Zimmer, B., Kerren, A.: Harnessing WebGL and websockets for a web-based collaborative graph exploration tool. In: Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 583–598. Springer, Heidelberg (2015) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science, ISOVIS GroupLinnaeus UniversityVäxjöSweden

Personalised recommendations