Advertisement

The Book Embedding Problem from a SAT-Solving Perspective

  • Michael A. BekosEmail author
  • Michael Kaufmann
  • Christian Zielke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9411)

Abstract

In a book embedding, the vertices of a graph are placed on the spine of a book and the edges are assigned to pages, so that edges of the same page do not cross. In this paper, we approach the problem of determining whether a graph can be embedded in a book of a certain number of pages from a different perspective: We propose a simple and quite intuitive SAT formulation, which is robust enough to solve non-trivial instances of the problem in reasonable time. As a byproduct, we show a lower bound of 4 on the page number of 1-planar graphs.

Keywords

Planar Graph Delaunay Triangulation Conjunctive Normal Form Page Number Outerplanar Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bekos, M., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of 4-planar graphs. In: STACS, vol. 25, pp. 137–148. LIPIcs, Schloss Dagstuhl (2014)Google Scholar
  2. 2.
    Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.: 1-planar graphs have constant book thickness. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 130–141. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Bernhart, F., Kainen, P.: The book thickness of a graph. Comb. Theory 27(3), 320–331 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.: Using ILP/SAT to determine pathwidth, visibility representations, and other grid-based graph drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 460–471. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Bilski, T.: Embedding graphs in books: a survey. IEEE Proc. Comput. Digit. Tech. 139(2), 134–138 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blankenship, R.: Book embeddings of graphs. Ph.D. thesis, Louisiana State University (2003)Google Scholar
  7. 7.
    Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math. Nachr. 117(1), 323–339 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brinkmann, G., Greenberg, S., Greenhill, C.S., McKay, B.D., Thomas, R., Wollan, P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305(1–3), 33–54 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Mylopoulos, J., Reiter, R. (eds.) AI, pp. 331–340. Morgan Kaufmann (1991)Google Scholar
  10. 10.
    Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Method 8(1), 33–58 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cornuéjols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the travelling salesman problem. Math. Programm. 26(3), 287–294 (1983)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dujmović, V., Wood, D.: Graph treewidth and geometric thickness parameters. Discrete Comput. Geom. 37(4), 641–670 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  15. 15.
    Gange, G., Stuckey, P.J., Marriott, K.: Optimal k-level planarization and crossing minimization. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 238–249. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Ganley, J.L., Heath, L.S.: The pagenumber of \(k\)-trees is \(O(k)\). Discrete Appl. Math. 109(3), 215–221 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Goldner, A., Harary, F.: Note on a smallest nonhamiltonian maximal planar graph. Bull. Malays. Math. Sci. Soc. 1(6), 41–42 (1975)Google Scholar
  18. 18.
    Heath, L.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE Computer Society (1984)Google Scholar
  19. 19.
    Heath, L.: Algorithms for embedding graphs in books. Ph.D. thesis, University of N. Carolina (1985)Google Scholar
  20. 20.
    Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as machines for laying out graphs. SIAM J. Discrete Math. 3(5), 398–412 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kainen, P.C., Overbay, S.: Extension of a theorem of Whitney. Appl. Math. Lett. 20(7), 835–837 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kottler, S.: Description of the SApperloT, SArTagnan and MoUsSaka solvers for the SAT-competition 2011 (2011)Google Scholar
  23. 23.
    Malitz, S.: Genus \(g\) graphs have pagenumber \(O(\sqrt{q})\). J. Algorithms 17(1), 85–109 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Malitz, S.: Graphs with \(e\) edges have pagenumber \(O(\sqrt{E})\). J. Algorithms 17(1), 71–84 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nishizeki, T., Chiba, N.: Hamiltonian cycles. In: Planar Graphs: Theory and Algorithms, chap. 10, pp. 171–184. Dover Books on Mathematics, Courier Dover Publications (2008)Google Scholar
  26. 26.
    Ollmann, T.: On the book thicknesses of various graphs. In: Hoffman, F., Levow, R., Thomas, R. (eds.) Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. VIII, p. 459 (1973)Google Scholar
  27. 27.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symbolic Comput. 2(3), 293–304 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rosenberg, A.L.: The Diogenes approach to testable fault-tolerant arrays of processors. IEEE Trans. Comput. C–32(10), 902–910 (1983)CrossRefGoogle Scholar
  29. 29.
    Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete Math. 310(1), 6–11 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tarjan, R.: Sorting using networks of queues and stacks. J. ACM 19(2), 341–346 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permutations with constraints. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 517–527. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  32. 32.
    Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Technical report TR-298, EECS Department, Princeton University (1982)Google Scholar
  33. 33.
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. C–38(1), 36–67 (1989)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael A. Bekos
    • 1
    Email author
  • Michael Kaufmann
    • 1
  • Christian Zielke
    • 1
  1. 1.Wilhelm-Schickard-Institut Für InformatikUniversität TübingenTübingenGermany

Personalised recommendations