Skip to main content

A Compiler of Two-Party Protocols for Composable and Game-Theoretic Security, and Its Application to Oblivious Transfer

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9496))

Included in the following conference series:

  • 596 Accesses

Abstract

In this paper, we consider the following question: Does composing protocols having game-theoretic security result in a secure protocol in the sense of game-theoretic security? In order to discuss the composability of game-theoretic properties, we study security of cryptographic protocols in terms of the universal composability (UC) and game theory simultaneously. The contribution of this paper is the following: (i) We propose a compiler of two-party protocols in the local universal composability (LUC) framework such that it transforms any two-party protocol secure against semi-honest adversaries into a protocol secure against malicious adversaries in the LUC framework; (ii) We consider the application of our compiler to oblivious transfer (OT) protocols, by which we obtain a construction of OT meeting both UC security and game-theoretic security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The enhanced trapdoor permutation has the property that a random element generated by the domain sampler is hard to invert, even given the random coins used by the sampler. Note that any trapdoor permutation over \(\{0,1\}^k\) is clearly enhanced, since this domain can be easily and directly sampled.

References

  1. Alwen, J., Katz, J., Lindell, Y., Persiano, G., Shelat, A., Visconti, I.: Collusion-free multiparty computation in the mediated model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 524–540. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 124–143. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library. In: IACR Cryptology ePrint Archive (2003)

    Google Scholar 

  6. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science (FOCS 2001), pp. 136–145 (2001)

    Google Scholar 

  7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 494–503 (2002)

    Google Scholar 

  8. Canetti, R., Vald, M.: Universally composable security with local adversaries. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldreich, O.: The Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 218–229 (1987)

    Google Scholar 

  13. Gradwohl, R., Livne, N., Rosen, A.: Sequential rationality in cryptographic protocols. In: 51th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 623–632 (2010)

    Google Scholar 

  14. Higo, H., Tanaka, K., Yamada, A., Yasunaga, K.: A game-theoretic perspective on oblivious transfer. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 29–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Higo, H., Tanaka, K., Yasunaga, K.: Game-theoretic security for bit commitment. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 303–318. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Izmalkov, S., Lepinski, M., Micali, S.: Perfect implementation. Games Econ. Behav. 71(1), 121–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 585–595 (2005)

    Google Scholar 

  18. Katz, J.: Bridging game theory and cryptography: recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 543–552 (2005)

    Google Scholar 

  21. Maurer, U.: Constructive cryptography – a primer. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, p. 1. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Maurer, U., Renner, R.: Abstract cryptography. In: Second Symposium on Innovations in Computer Science (ICS 2011), pp. 1–21 (2011)

    Google Scholar 

  23. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report TR-81, Aiken Computation Lab., Harvard University (1981)

    Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous referees for their helpful comments. This work was partially supported by JSPS KAKENHI Grant Number 15H02710, and it was partially conducted under the auspices of the MEXT Program for Promoting the Reform of National Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Goto, S., Shikata, J. (2015). A Compiler of Two-Party Protocols for Composable and Game-Theoretic Security, and Its Application to Oblivious Transfer. In: Groth, J. (eds) Cryptography and Coding. IMACC 2015. Lecture Notes in Computer Science(), vol 9496. Springer, Cham. https://doi.org/10.1007/978-3-319-27239-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27239-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27238-2

  • Online ISBN: 978-3-319-27239-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics