Skip to main content

Oxide TFTs @ FCT-UNL

  • Chapter
  • First Online:
A Second-Order ΣΔ ADC Using Sputtered IGZO TFTs

Abstract

Oxide thin-film transistors (TFTs) optimization is imperative in order to obtain a successful integration of circuits. In fact, parameters as turn-on voltage (Von) or gate leakage current (IG) are known to influence circuit characteristics. These parameters are greatly affected by the properties of the dielectric layer and its interface with the semiconductor. Therefore, amorphous high-κ dielectrics acquire an important role, especially in multicomponent single or multilayer structures, where materials with different electrical properties (e.g., high-κ and high bandgap energy, EG) are combined to acquire dielectrics with the best possible performance and reliability.

In this chapter a brief overview about fabrication of thin films and TFTs is provided. Then, it presents a detailed discussion on the characterization of sputtered amorphous multicomponent high-κ dielectrics based on Ta2O5 and SiO2, using single and multilayer structures, and their integration in indium-gallium-zinc oxide (IGZO) TFTs. Finally, an existing model for a-Si:H TFTs is adapted to IGZO TFTs technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It was previously shown that, under moderate substrate bias, improved compactness and better insulating properties are achieved, due to re-sputtering of weakly bonded species from the growing film (naturally, this effect is material dependent) [5].

  2. 2.

    Negative masks were used for lift-off processes of all the layers, except dielectric patterning that required a positive mask for subsequent RIE process.

  3. 3.

    In both dielectrics a peak at 2\(\theta = 46^{\circ }\) is visible and is due to the Pt foil (the heating element) where the sample is mounted.

  4. 4.

    Seven layer structures were still not available when RBS analysis was performed but the five layer sample is perfectly suitable for the RBS comparisons envisaged here.

References

  1. P. Barquinha, Transparent oxide thin-film transistors: production, characterization and integration. Ph.D. thesis, 2010

    Google Scholar 

  2. H.Q. Chiang, Development of oxide semiconductors: materials, devices, and integration. Ph.D. thesis, Oregon State University, 2007

    Google Scholar 

  3. A.H. Simon, Sputter processing, in Handbook of Thin Film Deposition, 3rd edn., ed. by K. Seshan (William Andrew Publishing, Oxford, 2012), pp. 55–88

    Chapter  Google Scholar 

  4. R.C. Jaeger, Introduction to Microelectronic Fabrication (Addison-Wesley Longman Publishing, Boston, 1987)

    Google Scholar 

  5. P. Barquinha, R. Martins, L. Pereira, E. Fortunato, Transparent Oxide Electronics: From Materials to Devices (Wiley, Chichester, 2012)

    Book  Google Scholar 

  6. D. Hess, Dry-etching processes, in Microelectronic Materials and Processes, ed. by R.A. Levy (Springer Netherlands, Dordrecht, 1989)

    Chapter  Google Scholar 

  7. K. Nojiri, Dry Etching Technology for Semiconductors (Springer International Publishing, Cham, 2015)

    Book  Google Scholar 

  8. H. Stanjek, W. Häusler, Basics of X-ray diffraction. Hyperfine Interact. 154(1–4), 107–119 (2004)

    Article  Google Scholar 

  9. C.R. Blanchard, Atomic force microscopy. Chem. Educ. 1(5), 1–8 (1996)

    Article  MathSciNet  Google Scholar 

  10. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  11. Y. Leng, Materials Characterization (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

    Book  Google Scholar 

  12. N.P. Barradas, C. Jeynes, R.P. Webb, Simulated annealing analysis of Rutherford backscattering data. Appl. Phys. Lett. 71(2), 291 (1997)

    Google Scholar 

  13. W.-K. Chu, J.W. Mayer, M.-A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978)

    Google Scholar 

  14. H. Fujiwara, Spectroscopic Ellipsometry (Wiley, Chichester, 2007)

    Book  Google Scholar 

  15. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  16. C. Chaneliere, S. Four, J. Autran, R. Devine, Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si. Microelectron. Reliab. 39(2), 261–268 (1999)

    Article  Google Scholar 

  17. P. Barquinha, A.M. Vila, G. GonÇalves, L. Pereira, R. Martins, J.R. Morante, E. Fortunato, Gallium-indium-zinc-oxide-based thin-film transistors: influence of the source/drain material. IEEE Trans. Electron Devices 55(4), 954–960 (2008)

    Article  Google Scholar 

  18. J.F. Wager, Transparent electronics. Science 300(5623), 1245–1246 (2003)

    Article  Google Scholar 

  19. L. Zhang, J. Li, X.W. Zhang, X.Y. Jiang, Z.L. Zhang, High-performance ZnO thin film transistors with sputtering SiO2/Ta2O5/SiO2 multilayer gate dielectric. Thin Solid Films 518(21), 6130–6133 (2010)

    Article  Google Scholar 

  20. L. Zhang, H. Zhang, J.W. Ma, X.W. Zhang, X.Y. Jiang, Z.L. Zhang, Copper phthalocyanine thin-film field-effect transistor with SiO2/Ta2O5/SiO2 multilayer insulator. Thin Solid Films 518(21), 6134–6136 (2010)

    Article  Google Scholar 

  21. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, J. Chung, Amorphous gallium indium zinc oxide thin film transistors: sensitive to oxygen molecules. Appl. Phys. Lett. 90(19), 192101 (2007)

    Google Scholar 

  22. G. Bahubalindruni, V.G. Tavares, P. Barquinha, C. Duarte, R. Martins, E. Fortunato, P.G. de Oliveira, Basic analog circuits with a-GIZO thin-film transistors: modeling and simulation, in 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD) (IEEE, New York, 2012), pp. 261–264

    Google Scholar 

  23. D.H. Kim, Y.W. Jeon, S. Kim, Y. Kim, Y.S. Yu, D.M. Kim, H.-I. Kwon, Physical parameter-based spice models for InGaZnO thin-film transistors applicable to process optimization and robust circuit design. IEEE Electron Device Lett. 33(1), 59–61 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Correia, A., Barquinha, P.M.C., Goes, J. (2016). Oxide TFTs @ FCT-UNL. In: A Second-Order ΣΔ ADC Using Sputtered IGZO TFTs. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27192-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27192-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27190-3

  • Online ISBN: 978-3-319-27192-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics