Evaluation of Lightweight Block Ciphers for Embedded Systems

  • Oana Barahtian
  • Mihai Cuciuc
  • Lucian Petcana
  • Cătălin Leordeanu
  • Valentin Cristea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9522)


Ubiquitous Computing and the Internet of Things are two paradigms which have gained a lot of popularity lately. They are based on a multitude of low power devices which usually communicate through wireless connections. To avoid security and reliability problems, efficient cryptographic algorithms must be used for authentication, key exchange and message encryption. Due to the wide range of such algorithms and their characteristics, some ciphers are more suitable for implementation on certain platforms than others. In this paper we propose solutions for the implementation and evaluation of block ciphers on 8-bit, 16-bit and 32-bit microcontrollers. We focus on widely used algorithms such as AES (the tinyAES implementation), as well as others which are suitable for embedded platforms, such as the Simon and Speck family of block ciphers. The conclusions of this paper are drawn based on the performance and energy efficiency of each algorithm.


Block ciphers Embedded systems Cryptographic algorithms Simon and Speck 



The work has been funded by the “Sectoral Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds” through the Financial Agreements POSDRU/159/1.5/S/134398 and POSDRU 187/ 1.5/S/155420.

This research presented is also supported by the project clueFarm: Information system based on cloud services accessible through mobile devices, to increase product quality and business development farms - PN-II-PT-PCCA-2013-4-0870.


  1. 1.
    Lee, H., Lee, K., Shin, Y.: AES implementation and performance evaluation on 8-bit microcontrollers, arXiv preprint (2009). arXiv:0911.0482
  2. 2.
    Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in ubiquitous computing. ACM Trans. Comput. Hum. Interact. (TOCHI) 7(1), 29–58 (2000)CrossRefGoogle Scholar
  3. 3.
    Buttyan, L., Hubaux, J.-P.: Security and cooperation in wireless networks. In: Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing. Cambridge University Press (2007)Google Scholar
  4. 4.
    Blumenthal, U., Maino, F., McCloghrie, K.: The advanced encryption standard (AES) cipher algorithm in the SNMP user-based security model. Internet proposed standard RFC 3826 (2004)Google Scholar
  5. 5.
    Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and implementation of low-area and low-power AES encryption hardware core. In: 9th EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools, DSD 2006, pp. 577–583. IEEE (2006)Google Scholar
  6. 6.
    Passow, P., Stoll, N., Junginger, S., Thurow, K.: A wireless sensor node for long-term monitoring in life science applications. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2013), pp. 898–901. IEEE (2013)Google Scholar
  7. 7.
    Moon, D., Hwang, K., Lee, W.I., Lee, S.-J., Lim, J.-I.: Impossible differential cryptanalysis of reduced round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  8. 8.
    Dalmisli, K.V., Ors, B.: Design of new tiny circuits for AES encryption algorithm. In: 3rd International Conference on Signals, Circuits and Systems (SCS 2009), pp. 1–5. IEEE (2009)Google Scholar
  9. 9.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint Archive 2013, p. 404 (2013)Google Scholar
  10. 10.
    Beaulieu, R., Douglas S., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Block Ciphers on AVR 8-bit Microcontrollers (2015)Google Scholar
  11. 11.
    Kaps, J.-P.: Chai-tea, cryptographic hardware implementations of xTEA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 363–375. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfer, J.: Efficient AES implementations on ASICs and FPGAs. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 98–112. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  15. 15.
    Bogdanov, A.: Analysis and design of block cipher constructions. Europischer Univ.-Verlag (2010)Google Scholar
  16. 16.
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEEE Proc. Inf. Sec. 152(1), 13–20 (2005)CrossRefGoogle Scholar
  17. 17.
    Knudsen, L.R.: Practically secure Feistel ciphers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 211–221. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  18. 18.
    Murphy, S.: The power of NISTs statistical testing of AES candidates. Preprint, 17 January 2000Google Scholar
  19. 19.
    Soto, J.: Randomness testing of the AES candidate algorithms. In: NIST (1999).
  20. 20.
    Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking ciphers with COPACOBANA – a cost-optimized parallel code breaker. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 101–118. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  21. 21.
    Gneysu, T., Pfeiffer, G., Paar, C., Schimmler, M.: Three years of evolution: cryptanalysis with COPACOBANA. In: Workshop Record of SHARCS (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Oana Barahtian
    • 1
  • Mihai Cuciuc
    • 2
  • Lucian Petcana
    • 1
  • Cătălin Leordeanu
    • 1
  • Valentin Cristea
    • 1
  1. 1.Faculty of Automatic Control and ComputersUniversity ‘Politehnica’ of BucharestBucharestRomania
  2. 2.Microchip Technology Inc.BucharestRomania

Personalised recommendations