Abstract
In this paper we describe a new error-correcting code (ECC) inspired by the Naccache-Stern cryptosystem. While by far less efficient than Turbo codes, the proposed ECC happens to be more efficient than some established ECCs for certain sets of parameters.
The new ECC adds an appendix to the message. The appendix is the modular product of small primes representing the message bits. The receiver recomputes the product and detects transmission errors using modular division and lattice reduction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Shannon’s theorem states that the best achievable expansion rate is \(1 - H_2(p_b)\), where \(H_2\) is binary entropy and \(p_b\) is the acceptable error rate.
- 2.
i.e. encoded and potentially corrupted.
- 3.
\(p_k \simeq k\ln k\).
References
Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo-codes. In: IEEE International Conference on Communications - ICC 1993, vol. 2, pp. 1064–1070, May 1993
Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth naccache-stern encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 327–339. Springer, Heidelberg (2008)
Dusart, P.: The \(k{\rm {th}}\) prime is greater than \(k (\ln k+ \ln \ln k-1)\) for \(k \ge 2\). Math. Comput. 68, 411–415 (1999)
Elias, P.: Coding for noisy channels. In: IRE Convention Record, pp. 37–46 (1955)
Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003)
Goppa, V.D.: Codes on algebraic curves. Sov. Math. Dokl. 24, 170–172 (1981)
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Muller, D.E.: Application of boolean algebra to switching circuit design and to error detection. IRE Trans. Inf. Theory 3, 6–12 (1954)
Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)
Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. IRE Trans. Inf. Theory 4, 38–49 (1954)
Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)
Rosser, J.B.: The \(n\)-th prime is greater than \(n \ln n\). Proc. Lond. Math. Soc. 45, 21–44 (1938)
Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)
Vallée, B.: Gauss’ algorithm revisited. J. Algorithms 12(4), 556–572 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Toy Example
A Toy Example
Let m be the 10-bit message 1100100111. For \(t=2\), we let p be the smallest prime number greater than \(2 \cdot 29^4\), i.e. \(p=707293\). We generate the redundancy:
As we focus on the new error-correcting code we simply omit the Reed-Muller component. The encoded message is
Let the received encoded message be \(\alpha =\mathtt{1100101011_2} \Vert \mathtt{129125_{10}}\). Thus,
Dividing by c(m) we get
Applying the rationalize and factor technique we obtain \(s = \displaystyle \frac{17}{19}\,\,\mathrm{{mod}}\,\,707293\). It follows that \(m' \oplus m = \mathtt{0000001100}\). Flipping the bits retrieved by this calculation, we recover m.
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Brier, E., Coron, JS., Géraud, R., Maimuţ, D., Naccache, D. (2015). A Number-Theoretic Error-Correcting Code. In: Bica, I., Naccache, D., Simion, E. (eds) Innovative Security Solutions for Information Technology and Communications. SECITC 2015. Lecture Notes in Computer Science(), vol 9522. Springer, Cham. https://doi.org/10.1007/978-3-319-27179-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-27179-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27178-1
Online ISBN: 978-3-319-27179-8
eBook Packages: Computer ScienceComputer Science (R0)