Secure Implementation of Stream Cipher: Trivium

  • Dillibabu Shanmugam
  • Suganya Annadurai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9522)


Trivium is a hardware oriented synchronous stream cipher designed by Christophe De Cannière and Bart Preneel [7]. Trivium is one of the eSTREAM final portfolio cipher. Regardless of the security of the cipher in theory, implementation attacks like Differential Power Analysis (DPA) attack [10, 12, 18] and Fault attack [9] on Trivium were observed. DPA attack of Trivium exploits the re-synchronization phase of the algorithm to reveal the key.

In this paper, we analyse various implementation techniques as countermeasures for Trivium stream cipher against DPA attack. First, we present Threshold Implementation (TI) of Trivium using random mask value. Second, we propose algorithm level changes (Modified Trivium) to counteract the attack, which introduces negligible resource overhead to the implementation. Third, random accelerator concept is introduced for parallel architecture along with combined techniques of TI and algorithm level changes to further increase the attack complexity. Finally, we present comparative study on the performance of Trivium for the proposed techniques.


Trivium Differential power analysis attack Threshold implementation and algorithm level countermeasure 



This Research work was funded by Department of Atomic Energy (DAE), Govt. of India under the grant 12-R&D-IMS-5.01.0204. We would like to thank our team members for their assistance in this work and anonymous reviewers for their useful comments.


  1. 1.
    The ECRYPT Stream Cipher Project. Accessed 15 December 2014
  2. 2.
    Akkar, M.-L., Bévan, R., Dischamp, P., Moyart, D.: Power analysis, what is now possible\({...}\) In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Atani, R.E., Mirzakuchaki, S., Atani, S.E., Meier, W.: On DPA-resistive implementation of FSR-based stream ciphers using SABL logic styles. Int. J. Comput. Commun. Cont. 4, 324–335 (2008)CrossRefGoogle Scholar
  4. 4.
    Burman, S., Mukhopadhyay, D., Veezhinathan, K.: LFSR based stream ciphers are vulnerable to power attacks. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 384–392. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  5. 5.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  6. 6.
    Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    De Canniere, C., Preneel, B.: Trivium specifications. eSTREAM. ECRYPT Stream Cipher Project, Report 2005/030 (2005)Google Scholar
  8. 8.
    Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Veyrat-Charvillon, N.: Cryptanalysis of the CHES 2009/2010 Random Delay Countermeasure. Cryptology ePrint Archive, Report 2012/038 (2012).
  9. 9.
    Dutta, A., Paul, G.: Deterministic hard fault attack on trivium. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 134–145. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Fischer, W., Gammel, B.M., Kniffler, O., Velten, J.: Differential power analysis of stream ciphers. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 257–270. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  11. 11.
    Grabher, P., Großschädl, J., Page, D.: Non-deterministic processors: FPGA-based analysis of area, performance and security. In: Proceedings of the 4th Workshop on Embedded Systems Security, p. 1. ACM (2009)Google Scholar
  12. 12.
    Jia, Y., Yupu, H., Wang, F., Wang, H.: Correlation power analysis of Trivium. Secur. Commun. Netw. 5(5), 479–484 (2012)CrossRefGoogle Scholar
  13. 13.
    Mansouri, S.S., Dubrova, E.: An architectural countermeasure against power analysis attacks for FSR-based stream ciphers. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 54–68. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: USENIX Workshop on Smartcard Technology (1999)Google Scholar
  15. 15.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Ratanpal, G.B., Williams, R.D., Blalock, T.N.: An on-chip signal suppression countermeasure to power analysis attacks. IEEE Trans. Dependable Secure Comput. 1(3), 179–189 (2004)CrossRefGoogle Scholar
  17. 17.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, DTIC Document (2001)Google Scholar
  18. 18.
    Strobel, D., Paar, I.C.: Side channel analysis attacks on stream ciphers. Ph.D. thesis, master thesis (2009)Google Scholar
  19. 19.
    Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards. In: Proceedings of the 28th European Solid-State Circuits Conference, ESSCIRC 2002, pp. 403–406. IEEE (2002)Google Scholar
  20. 20.
    Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: Proceedings of the Conference on Design, Automation and Test in Europe, vol. 1, p. 10246. IEEE Computer Society (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Hardware Security Research GroupSociety for Electronic Transactions and SecurityChennaiIndia

Personalised recommendations