Abstract
Transactional data about individuals is increasingly being collected to support many important real-life applications ranging from healthcare to marketing. Thus, privacy issues in sharing transactional data among different parties have attracted considerable research interest in recent years. Due to the high-dimensionality and sparsity of transactional data, existing privacy-preserving techniques will incur excessive information loss. We propose a hybrid optimization approach for anonymizing transactional data through integrating different anonymous techniques. Experimental results verify that our approach significantly outperforms the current state-of-the-art algorithms in terms of data utility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, C.C., Thompson, B., Wang, H.W., Yao, D.: Towards publishing recommendation data with predictive anonymization. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 24–35. ACM (2010)
Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 401–406. ACM (2001)
Xu, Y., Wang, K., Fu, A.W.C., Yu, P.S.: Anonymizing transaction databases for publication. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 767–775. ACM (2008)
Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. Proc. VLDB Endowment 1(1), 115–125 (2008)
Terrovitis, M., Mamoulis, N., Kalnis, P.: Local and global recoding methods for anonymizing set-valued data. VLDB J. Int. J. Very Large Data Bases 20(1), 83–106 (2011)
He, Y., Naughton, J.F.: Anonymization of set-valued data via top-down, local generalization. Proc. VLDB Endowment 2(1), 934–945 (2009)
Liu, J., Wang, K.: Anonymizing transaction data by integrating suppression and generalization. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 171–180. Springer, Heidelberg (2010)
Wang, L.E., Li, X.: A clustering-based bipartite graph privacy-preserving approach for sharing high-dimensional data. Int. J. Softw. Eng. Knowl. Eng. 24(07), 1091–1111 (2014)
Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 715–724. IEEE (2008)
Ghinita, G., Kalnis, P., Tao, Y.: Anonymous publication of sensitive transactional data. IEEE Trans. Knowl. Data Eng. 23(2), 161–174 (2011)
Wang, L., Li, X.: Personalized privacy protection for transactional data. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 253–266. Springer, Heidelberg (2014)
Fung, B., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (CSUR) 42(4), 14 (2010)
Poulis, G., Loukides, G., Gkoulalas-Divanis, A., Skiadopoulos, S.: Anonymizing data with relational and transaction attributes. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 353–369. Springer, Heidelberg (2013)
Takahashi, T., Sobataka, K., Takenouchi, T., Toyoda, Y., Mori, T., Kohro, T.: Top-down itemset recoding for releasing private complex data. In: 2013 Eleventh Annual International Conference on Privacy, Security and Trust (PST), pp. 373–376. IEEE (2013)
Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data using safe groupings. Proc. VLDB Endowment 1(1), 833–844 (2008)
Gkoulalas-Divanis, A., Loukides, G.: Utility-guided clustering-based transaction data anonymization. Trans. Data Priv. 5(1), 223–251 (2012)
Wong, W.K., Mamoulis, N., Cheung, D.W.L.: Non-homogeneous generalization in privacy preserving data publishing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 747–758. ACM (2010)
Loukides, G., Gkoulalas-Divanis, A., Malin, B.: Coat: constraint-based anonymization of transactions. Knowl. Inf. Syst. 28(2), 251–282 (2011)
Gionis, A., Mazza, A., Tassa, T.: k-anonymization revisited. In: 2008 IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 744–753. IEEE (2008)
Karr, A.F., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P.: A framework for evaluating the utility of data altered to protect confidentiality. Am. Stat. 60(3), 224–232 (2006)
Acknowledgment
The research is supported by the National Key Basic Research Program of China (973 Program, No. 2012CB326403), National Science Foundation of China (No. 61272535), Guangxi Bagui Scholar Teams for Innovation and Research Project, Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, Guangxi Natural Science Foundation (Nos. 2015GXNSFBA139246, 2013GXNSFBA019263, 2014GXNSF BA118288), Science and Technology Research Projects of Guangxi Higher Education (Nos. 2013YB029, 2015YB032), the Guangxi Science Research and Technology Development Project (No. 14124004-4-11) and Youth Scientific Research Foundation of Guangxi Normal University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Le., Li, X. (2015). A Hybrid Optimization Approach for Anonymizing Transactional Data. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9532. Springer, Cham. https://doi.org/10.1007/978-3-319-27161-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-27161-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27160-6
Online ISBN: 978-3-319-27161-3
eBook Packages: Computer ScienceComputer Science (R0)