Skip to main content

A Hybrid Optimization Approach for Anonymizing Transactional Data

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9532))

Abstract

Transactional data about individuals is increasingly being collected to support many important real-life applications ranging from healthcare to marketing. Thus, privacy issues in sharing transactional data among different parties have attracted considerable research interest in recent years. Due to the high-dimensionality and sparsity of transactional data, existing privacy-preserving techniques will incur excessive information loss. We propose a hybrid optimization approach for anonymizing transactional data through integrating different anonymous techniques. Experimental results verify that our approach significantly outperforms the current state-of-the-art algorithms in terms of data utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, C.C., Thompson, B., Wang, H.W., Yao, D.: Towards publishing recommendation data with predictive anonymization. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 24–35. ACM (2010)

    Google Scholar 

  2. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 401–406. ACM (2001)

    Google Scholar 

  3. Xu, Y., Wang, K., Fu, A.W.C., Yu, P.S.: Anonymizing transaction databases for publication. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 767–775. ACM (2008)

    Google Scholar 

  4. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anonymization of set-valued data. Proc. VLDB Endowment 1(1), 115–125 (2008)

    Article  Google Scholar 

  5. Terrovitis, M., Mamoulis, N., Kalnis, P.: Local and global recoding methods for anonymizing set-valued data. VLDB J. Int. J. Very Large Data Bases 20(1), 83–106 (2011)

    Article  Google Scholar 

  6. He, Y., Naughton, J.F.: Anonymization of set-valued data via top-down, local generalization. Proc. VLDB Endowment 2(1), 934–945 (2009)

    Article  Google Scholar 

  7. Liu, J., Wang, K.: Anonymizing transaction data by integrating suppression and generalization. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 171–180. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Wang, L.E., Li, X.: A clustering-based bipartite graph privacy-preserving approach for sharing high-dimensional data. Int. J. Softw. Eng. Knowl. Eng. 24(07), 1091–1111 (2014)

    Article  Google Scholar 

  9. Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse high-dimensional data. In: 2008 IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 715–724. IEEE (2008)

    Google Scholar 

  10. Ghinita, G., Kalnis, P., Tao, Y.: Anonymous publication of sensitive transactional data. IEEE Trans. Knowl. Data Eng. 23(2), 161–174 (2011)

    Article  Google Scholar 

  11. Wang, L., Li, X.: Personalized privacy protection for transactional data. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS, vol. 8933, pp. 253–266. Springer, Heidelberg (2014)

    Google Scholar 

  12. Fung, B., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (CSUR) 42(4), 14 (2010)

    Article  Google Scholar 

  13. Poulis, G., Loukides, G., Gkoulalas-Divanis, A., Skiadopoulos, S.: Anonymizing data with relational and transaction attributes. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 353–369. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Takahashi, T., Sobataka, K., Takenouchi, T., Toyoda, Y., Mori, T., Kohro, T.: Top-down itemset recoding for releasing private complex data. In: 2013 Eleventh Annual International Conference on Privacy, Security and Trust (PST), pp. 373–376. IEEE (2013)

    Google Scholar 

  15. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data using safe groupings. Proc. VLDB Endowment 1(1), 833–844 (2008)

    Article  Google Scholar 

  16. Gkoulalas-Divanis, A., Loukides, G.: Utility-guided clustering-based transaction data anonymization. Trans. Data Priv. 5(1), 223–251 (2012)

    MathSciNet  Google Scholar 

  17. Wong, W.K., Mamoulis, N., Cheung, D.W.L.: Non-homogeneous generalization in privacy preserving data publishing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 747–758. ACM (2010)

    Google Scholar 

  18. Loukides, G., Gkoulalas-Divanis, A., Malin, B.: Coat: constraint-based anonymization of transactions. Knowl. Inf. Syst. 28(2), 251–282 (2011)

    Article  Google Scholar 

  19. Gionis, A., Mazza, A., Tassa, T.: k-anonymization revisited. In: 2008 IEEE 24th International Conference on Data Engineering. ICDE 2008, pp. 744–753. IEEE (2008)

    Google Scholar 

  20. Karr, A.F., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P.: A framework for evaluating the utility of data altered to protect confidentiality. Am. Stat. 60(3), 224–232 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The research is supported by the National Key Basic Research Program of China (973 Program, No. 2012CB326403), National Science Foundation of China (No. 61272535), Guangxi Bagui Scholar Teams for Innovation and Research Project, Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, Guangxi Natural Science Foundation (Nos. 2015GXNSFBA139246, 2013GXNSFBA019263, 2014GXNSF BA118288), Science and Technology Research Projects of Guangxi Higher Education (Nos. 2013YB029, 2015YB032), the Guangxi Science Research and Technology Development Project (No. 14124004-4-11) and Youth Scientific Research Foundation of Guangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Le., Li, X. (2015). A Hybrid Optimization Approach for Anonymizing Transactional Data. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9532. Springer, Cham. https://doi.org/10.1007/978-3-319-27161-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27161-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27160-6

  • Online ISBN: 978-3-319-27161-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics