Skip to main content

Visual Localization Based on Quadtrees

  • Conference paper
  • First Online:
Robot 2015: Second Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

  • 2683 Accesses

Abstract

Autonomous mobile robots moving through their environment to perform the tasks for which they were programmed. The robot proper operation largely depends on the quality of the self localization information used when globally navigating in its environment. This paper describes a method of maintaining a self-location probability distribution of a set of states, which represents the robot position. The novel feature of this approach is to represent the state space as a Quadtree that dynamically evolves to use the minimum set of statements without loss of accuracy. We demonstrate the benefits of this approach in localizing a robot in the RoboCup SPL environment using the information provided by its camera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano, H.: RoboCup-97: robot soccer world cup I. In: LNCS, vol. 1395. Springer (1998)

    Google Scholar 

  2. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA 1999), pp. 1322–1328 (1999)

    Google Scholar 

  3. Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME, Journal of Basic Engineering 82(Series D), 34–45 (1960)

    Google Scholar 

  4. Fox, D., Burgard, W., Thrun, S.: Markov Localization for Mobile Robots in Dynamic Environments. Journal of Artificial Intelligence Research 11, 391–427 (1999)

    MATH  Google Scholar 

  5. Aguero, C., Cañas, J.M., Martín, F., Perdices, E.: Behavior-based Iterative component architecture for soccer applications with the nao humanoid. In: Proceedings of the 5th Workshop on Humanoid Soccer Robots, inside 10th IEEE-RAS Int. Conf. Humanoid Robots. Nashville, TN (2010)

    Google Scholar 

  6. Kyriy, E., Buehler, M.: Three-state Extended Kalman Filter for Mobile Robot Localization, Carnegie Mellon Technical Report, Pittsburgh, PA (2002)

    Google Scholar 

  7. Lastra, R., Vallejos, P., Ruiz-del-Solar, J.: Self-Localization and ball tracking for the robocup 4-legged league. In: Proceeding of the 2nd IEEE Latin American Robotics Symposium LARS 2005, Santiago de Chile, Chile (2005)

    Google Scholar 

  8. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile robot navigation. In: Proceedings of the AAAI Thirteenth National Conference on Artificial Intelligence, vol. 2, Portland, OG, pp. 944–950 (1996)

    Google Scholar 

  9. Martín, F., Matellán, V., Cañas, J.M., Barrera, P.: Visual based localization for a legged robot. In: LNCS (LNAI), vol. 4020, pp. 708–715 (2006)

    Google Scholar 

  10. Koenig, S., Simmons, R.: Xavier: A Robot Navigation Architecture Based on Partially Observable Markov Decision Process Models. Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, 91–122 (1998) (MIT Press)

    Google Scholar 

  11. Buschka, P., Saffiotti, A., Wasik, Z.: Fuzzy landmark-based localization for a legged robot. In: Proceedings of the International Conference on Intelligent Robots and Systems 2000, Takamatsu, Japan, pp. 1205–1210 (2000)

    Google Scholar 

  12. Thrun, S.: Particle filters in robotics. In: Proceedings of the 18th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2002), San Francisco, CA, pp. 511–518 (2002)

    Google Scholar 

  13. Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo localization: efficient position estimation for mobile robots. In: Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI 1999), Orlando, FL, pp. 343–349 (1999)

    Google Scholar 

  14. Burchardt, A., Laue, T., Röfer, T.: Optimizing particle filter parameters for self-localization. In: RoboCup 2010: Robot Soccer World Cup XIV. LNCS, vol. 6556, pp. 145–156 (2010)

    Google Scholar 

  15. Hornung, A., et al.: Monte Carlo Localization for Humanoid Robot Navigation in Complex Indoor Environments Int. J. Human. Robot. 11, 1441002 (2014)

    Article  Google Scholar 

  16. Thrun, S., Beetz, M., Bennewitz, M., Burgard, W., Cremers, A.B., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N., Schultea, J., Schulz, D.: Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva. International Journal of Robotics Research 19(11), 972–999 (2000)

    Article  Google Scholar 

  17. Conde, R., Ollero, A., Cobano, J.A.: Method based on a particle filter for UAV trajectory prediction under uncertainties. In: 40th International Symposium of Robotics, Barcelona, Spain (2009)

    Google Scholar 

  18. Ko, N.Y., Kim, T.G., Noh, S.W.: Monte carlo localization of underwater robot using internal and external information. In: 2011 IEEE Asia-Pacific Services Computing Conference, APSCC 2011, Jeju, South Korea, pp. 410–415 (2011)

    Google Scholar 

  19. Lenser, S., Veloso, M.: Sensor resetting localization for poorly modelled mobile robots. In: Proceedings of ICRA-2000, the International Conference on Robotics and Automation, San Francisco, CA, pp. 1225–1232 (2000)

    Google Scholar 

  20. Röfer, T., Laue, T., Thomas, D.: Particle-filter-based self-localization using landmarks and directed lines. In: RoboCup 2005: Robot Soccer World Cup IX. LNAI, vol. 4020, pp. 608–615. Springer (2006)

    Google Scholar 

  21. Martín, F., Matellán, V., Barrera, P., Cañas, J.M.: Localization of legged robots combining a fuzzy-Markov method and a population of extended Kalman filters. Robotics and Autonomous Systems 55, 870–880 (2007)

    Article  Google Scholar 

  22. Daronkolaei, A.G., Shiry, S., Menhaja, M.B.: Multiple target tracking for mobile robots using the JPDAF algorithm. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, vol. 01, Washington, DC, pp. 137–145 (2007)

    Google Scholar 

  23. Finkel, R., Bentley, J.L.: Quad Trees: A Data Structure for Retrieval on Composite Keys. Acta Informatica 4(1), 1–9 (1974)

    Article  MATH  Google Scholar 

  24. Cazorla, M., García-Rodríguez, J., Cañas Plaza, J.M., García Varea, I., Matellán, V., Martín Rico, F., Martínez-Gómez, J., Rodríguez Lera, F.J., Suarez Mejias, C., Martínez Sahuquillo, M.E.: SIRVAMED: development of a comprehensive robotic system for monitoring and interaction for people with acquired brain damage and dependent people. In: XVI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Martín, F. (2016). Visual Localization Based on Quadtrees. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics