Skip to main content

An Active Knee Orthosis for the Physical Therapy of Neurological Disorders

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

This paper presents the design of a new robotic orthotic solution aimed at improving the rehabilitation of a number of neurological disorders (Multiple Sclerosis, Post-Polio and Stroke). These neurological disorders are the most expensive for the European Health Systems, and the personalization of the therapy will contribute to a 47% cost reduction. Most orthotic devices have been evaluated as an aid to in-hospital training and rehabilitation in patients with motor disorders of various origins. The advancement of technology opens the possibility of new active orthoses able to improve function in the usual environment of the patient, providing added benefits to state-of-the-art devices in life quality. The active knee orthosis aims to serve as a basis to justify the prescription and adaptation of robotic orthoses in patients with impaired gait resulting from neurological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. European Commission Health and Consumer Protection Directorate: Some elements on the situation of multiple sclerosis in the european union (2013)

    Google Scholar 

  2. Adams, R.J., Lloyd-Jones, D., Brown, T.M., et al.: Heart disease and stroke statistics-2010 update: a report from the american heart association. Circulation 121(7), e46–e215 (2010)

    Article  Google Scholar 

  3. Schmidt, H., Werner, C., Bernhardt, R., Hesse, S., , Kruger, J.: Gait rehabilitationmachines based on programmable footplates. Journal of NeuroEngineering and Rehabilitation 4(2) (2007)

    Google Scholar 

  4. Girone, M., Burdea, G., Bouzit, M., Popescu, V., Deutsch, J.E.: Stewart platform-based system for ankle telerehabilitation. Autonomous Robots 10(2), 203–212 (2001)

    Article  MATH  Google Scholar 

  5. Saglia, J.A., Tsagarakis, N.G., Dai, J.S., Caldwell, D.G.: A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. International Journal of Robotics Research 28(9), 1216–1227 (2009)

    Article  Google Scholar 

  6. Nikitczuk, J., Weinberg, B., Canavan, P.K., Mavroidis, C.: Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid. IEEE/ASME Transactions on Mechatronics 15(6), 952–960 (2010)

    Google Scholar 

  7. Roy, A., Krebs, H.I., Patterson, S.L., et al.: Measurement of human ankle stiffness using the anklebot. In: IEEE International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, pp. 356–363 (2007)

    Google Scholar 

  8. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(1), 24–31 (2004)

    Article  Google Scholar 

  9. Shamaei, K., Napolitano, P., Dollar, A.: Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 22(2), 258–268 (2014)

    Article  Google Scholar 

  10. Sawicki, G.S., Ferris, D.P.: A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. Journal of Neuroengineering and Rehabilitation 6(1), 23–39 (2009)

    Article  Google Scholar 

  11. Arazpour, M., Chitsazan, A., Bani, M., Rouhi, G., Ghomshe, F., Hutchins, S.: The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthet. Orthot. Int. 37(5), 411–414 (2013)

    Article  Google Scholar 

  12. Diaz, I., Gil, J.J., Sanchez, E.: Lower-limb robotic rehabilitation: Literature review and challenges. Journal of Robotics 2011, 11 (2013)

    Google Scholar 

  13. Cestari, M., Sanz-Merodio, D., Garcia, E.: Articulation with controllable stiffness and force-measuring device.Patent ES P201330882, WO 2014/198979 A1 (2013)

    Google Scholar 

  14. Cestari, M., Sanz-Merodio, D., Arevalo, J., Garcia, E.: An adjustable compliant joint for lower-limb exoskeletons. IEEE/ASME Transactions on Mechatronics 20(2), 889–898 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Garcia, E., Sanz-Merodio, D., Cestari, M., Perez, M., Sancho, J. (2016). An Active Knee Orthosis for the Physical Therapy of Neurological Disorders. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics