A UGV Approach to Measure the Ground Properties of Greenhouses

  • Alberto Ruiz-Larrea
  • Juan Jesús RoldánEmail author
  • Mario Garzón
  • Jaime del Cerro
  • Antonio Barrientos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 418)


Greenhouse farming is based on the control of the environment of the crops and the supply of water and nutrients to the plants. These activities require the monitoring of the environmental variables at both global and local scale. This paper presents a ground robot platform for measuring the ground properties of the greenhouses. For this purpose, infrared temperature and soil moisture sensors are equipped into an unmanned ground vehicle (UGV). In addition, the navigation strategy is explained including the path planning and following approaches. Finally, all the systems are validated in a field experiment and maps of temperature and humidity are performed.


Environmental monitoring Agriculture Greenhouse Robotics UGV Sensory system Navigation system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine 40(8), 102–114 (2002)CrossRefGoogle Scholar
  2. 2.
    Antonio, P., Grimaccia, F., Mussetta, M.: Architecture and methods for innovative heterogeneous wireless sensor network applications. Remote Sensing 4(5), 1146–1161 (2012)CrossRefGoogle Scholar
  3. 3.
    Choset, H., Pignon, P.: Coverage path planning: the boustrophedon cellular decomposition. In: Field and Service Robotics, pp. 203–209. Springer (1998)Google Scholar
  4. 4.
    Correll, N., Arechiga, N., Bolger, A., Bollini, M., Charrow, B., Clayton, A., Dominguez, F., Donahue, K., Dyar, S., Johnson, L., et al.: Building a distributed robot garden. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 1509–1516. IEEE (2009)Google Scholar
  5. 5.
    Ecker, J.R.: The ethylene signal transduction pathway in plants. Science 268(5211), 667 (1995)CrossRefGoogle Scholar
  6. 6.
    García, M.A., Gutiérrez, S., López, H.C., Rivera, S., Ruiz, A.C.: Estado del arte de la tecnología de robots aplicada a invernaderos. Avances en Investigación Agropecuaria 11(3), 53–61 (2007)Google Scholar
  7. 7.
    van Henten, E.J.: Greenhouse climate management: an optimal control approach. Landbouwuniversiteit te Wageningen (1994)Google Scholar
  8. 8.
    Kirnak, H., Kaya, C., Tas, I., Higgs, D.: The influence of water deficit on vegetative growth, physiology, fruit yield and quality in eggplants. Bulg. J. Plant Physiol. 27(3–4), 34–46 (2001)Google Scholar
  9. 9.
    Langreo, A.: La agricultura mediterránea en el siglo xxi. Méditerraneo Económico 2, 101–123 (2002)Google Scholar
  10. 10.
    Lieberman, M., Baker, J.E., Sloger, M.: Influence of plant hormones on ethylene production in apple, tomato, and avocado slices during maturation and senescence. Plant Physiology 60(2), 214–217 (1977)CrossRefGoogle Scholar
  11. 11.
    Linker, R., Seginer, I.: Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models. Mathematics and Computers in Simulation 65(1), 19–29 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Mandow, A., Gomez-de Gabriel, J.M., Martinez, J.L., Munoz, V.F., Ollero, A., García-Cerezo, A.: The autonomous mobile robot aurora for greenhouse operation. IEEE Robotics & Automation Magazine 3(4), 18–28 (1996)CrossRefGoogle Scholar
  13. 13.
    Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige, K.: The office marathon: Robust navigation in an indoor office environment (2010)Google Scholar
  14. 14.
    Martínez, M., Blasco, X., Herrero, J.M., Ramos, C., Sanchis, J.: Monitorización y control de procesos. una visión teórico-práctica aplicada a invernaderos. RIAII 2(4), 5–24 (2005)Google Scholar
  15. 15.
    Park, D.H., Kang, B.J., Cho, K.R., Shin, C.S., Cho, S.E., Park, J.W., Yang, W.M.: A study on greenhouse automatic control system based on wireless sensor network. Wireless Personal Communications 56(1), 117–130 (2011)CrossRefGoogle Scholar
  16. 16.
    Pawlowski, A., Guzman, J.L., Rodríguez, F., Berenguel, M., Sánchez, J., Dormido, S.: Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control. Sensors 9(1), 232–252 (2009)CrossRefGoogle Scholar
  17. 17.
    Roldán, J.J., Joossen, G., Sanz, D., del Cerro, J., Barrientos, A.: Mini-uav based sensory system for measuring environmental variables in greenhouses. Sensors 15(2), 3334–3350 (2015)CrossRefGoogle Scholar
  18. 18.
    Ruiz-Garcia, L., Lunadei, L., Barreiro, P., Robla, I.: A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends. Sensors 9(6), 4728–4750 (2009)CrossRefGoogle Scholar
  19. 19.
    Sánchez-Hermosilla, J., González, R., Rodríguez, F., Donaire, J.G.: Mechatronic description of a laser autoguided vehicle for greenhouse operations. Sensors 13(1), 769–784 (2013)CrossRefGoogle Scholar
  20. 20.
    Stanghellini, C., de Jong, T.: A model of humidity and its applications in a greenhouse. Agricultural and Forest Meteorology 76(2), 129–148 (1995)CrossRefGoogle Scholar
  21. 21.
    Valdiviezo, D.V.: Diseño de una red de sensores inalámbrica para agricultura de precisión. PhD thesis (2009)Google Scholar
  22. 22.
    Zhang, Q., Yang, X., Zhou, Y., Wang, L., Guo, X.: A wireless solution for greenhouse monitoring and control system based on zigbee technology. Journal of Zhejiang University Science A 8(10), 1584–1587 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alberto Ruiz-Larrea
    • 1
  • Juan Jesús Roldán
    • 1
    Email author
  • Mario Garzón
    • 1
  • Jaime del Cerro
    • 1
  • Antonio Barrientos
    • 1
  1. 1.Centre for Automation and Robotics (UPM-CSIC)MadridSpain

Personalised recommendations