Skip to main content

Building Fuzzy Elevation Maps from a Ground-Based 3D Laser Scan for Outdoor Mobile Robots

  • Conference paper
  • First Online:
Robot 2015: Second Iberian Robotics Conference

Abstract

The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end, spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides, rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error and model size are compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serón, J., Martínez, J.L., Mandow, A., Reina, A.J., Morales, J., García-Cerezo, A.: Automation of the arm-aided climbing maneuver for tracked mobile manipulators. IEEE Transactions on Industrial Electronics 61(7), 3638–3647 (2014)

    Article  Google Scholar 

  2. Santamaria-Navarro, A., Teniente, E.H., Morta, M., Andrade-Cetto, J.: Terrain classification in complex three-dimensional outdoor environments. Journal of Field Robotics 32(1), 42–60 (2015)

    Article  Google Scholar 

  3. Tong, C.H., Barfoot, T.D., Dupuis, E.: Three-dimensional SLAM for mapping planetary work site environments. Journal of Field Robotics 29(3), 381–412 (2012)

    Article  Google Scholar 

  4. Rekleitis, I., Bedwani, J.-L., Dupuis, E., Lamarche, T., Allard, P.: Autonomous over-the-horizon navigation using LIDAR data. Autonomous Robots, 1–18 (2012)

    Google Scholar 

  5. Ishigami, G., Otsuki, M., Kubota, T.: Path planning and navigation framework for a planetary exploration rover using a laser range finder. Springer Tracts in Advanced Robotics 92, 431–447 (2014)

    Article  Google Scholar 

  6. Nagatani, K., Tokunaga, N., Okada, Y., Yoshida, K., Hada, Y., Yoshida, T., Koyanagi, E.: Teleoperation of all-terrain robot using continuous acquisition of three-dimensional environment under time-delayed narrow bandwidth communication. In: IEEE Int. Workshop on Safety, Security & Rescue Robotics, Denver, USA (2009)

    Google Scholar 

  7. Birk, A., Pathak, K., Vaskevicius, N., Pfingsthorn, M., Poppinga, J., Schwertfeger, S.: Surface representations for 3D mapping. Künstliche Intelligenz 24, 249–254 (2010)

    Article  Google Scholar 

  8. Gingras, D., Lamarche, T., Bedwani, J.L., Dupuis, E.: Rough terrain reconstruction for rover motion planning. In: Proc. Canadian Conference on Computer and Robot Vision, Ottawa, Canada, pp. 191–198 (2010)

    Google Scholar 

  9. Vaskevicius, N., Birk, A., Pathak, K., Schwertfeger, S.: Efficient representation in three-dimensional environment modeling for planetary robotic exploration. Advanced Robotics 24(8–9), 1169–1197 (2010)

    Article  Google Scholar 

  10. Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to elevation maps for outdoor terrain mapping and loop closing. Int. Journal of Robotics Research 26(2), 217–230 (2007)

    Article  Google Scholar 

  11. Ishigami, G., Nagatani, K., Yoshida, K.: Path planning and evaluation for planetary rovers based on dynamic mobility index. In: IEEE Int. Conf. on Intelligent Robots and Systems, pp. 601–606 (2011)

    Google Scholar 

  12. Souza, A., Gonçalves, L.M.G.: Occupancy-elevation grid: an alternative approach for robotic mapping and navigation. Robotica (2015)

    Google Scholar 

  13. Gerbaud, T., Polotski, V., Cohen, P.: Simultaneous exploration and 3D mapping of unstructured environments. In: IEEE Int. Conf. on Systems, Man and Cybernetics, vol. 6, pp. 5333–5337 (2004)

    Google Scholar 

  14. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. The Visual Computer 13, 228–246 (1997)

    Article  Google Scholar 

  15. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: ACM SIGGRAPH Conf. on Computer Graphics, pp. 209–216 (1997)

    Google Scholar 

  16. Santos, J., Lodwick, W.A., Neumaier, A.: A new approach to incorporate uncertainty in terrain modeling. In: 2nd Int. Conf. on Geographic Information Science, Boulder, USA, pp. 291–299 (2002)

    Google Scholar 

  17. Anile, M., Furno, P., Gallo, G., Massolo, A.: A fuzzy approach to visibility maps creation over digital terrains. Fuzzy Sets and Systems 135, 63–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H., Yang, J., Zhao, C.: A generic approach to rugged terrain analysis based on fuzzy inference. In: 8th Int. Conf. on Control, Automation, Robotics and Vision, vol. 2, pp. 1108–1113 (2004)

    Google Scholar 

  19. Gu, J., Cao, Q., Huang, Y.: Rapid traversability assessment in 2.5D grid-based map on rough terrain. Int. Journal of Advanced Robotic Systems 5(4), 389–394 (2008)

    Google Scholar 

  20. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Gaussian process modeling of large scale terrain. Journal of Field Robotics 26(10), 812–840 (2009)

    Article  MATH  Google Scholar 

  21. Jang, J.-S.R.: ANFIS: Adaptative-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23(3), 665–685 (1993)

    Article  Google Scholar 

  22. Samadzadegan, F., Azizi, A., Hahn, M., Lucas, C.: Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling. ISPRS Journal of Photogrammetry and Remote Sensing 59(5), 255–277 (2005)

    Article  Google Scholar 

  23. Mandow, A., Cantador, T.J., García-Cerezo, A., Reina, A.J., Martínez, J.L., Morales, J.: Fuzzy modeling of natural terrain elevation from a 3D scanner point cloud. In: 7th IEEE Int. Symposium on Intelligent Signal Processing (WISP), Floriana, Malta (2011)

    Google Scholar 

  24. Martínez, J.-L., Mandow, A., Reina, A., Cantador, T.-J., Morales, J., García-Cerezo, A.: Navigability analysis of natural terrains with fuzzy elevation maps from ground-based 3D range scans. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1576–1581 (2013)

    Google Scholar 

  25. Mandow, A., Martínez, J.L., Reina, A.J., Morales, J.: Fast range-independent spherical subsampling of 3D laser scanner points and data reduction performance evaluation for scene registration. Pattern Recognition Letters 31(11), 1239–1250 (2010)

    Article  Google Scholar 

  26. Xiu, Z.-H., Ren, G.: Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems. Fuzzy Sets and Systems 151(1), 119–138 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Morales, J., Martínez, J.L., Mandow, A., Reina, A.J., Pequeño-Boter, A., García-Cerezo, A.: Boresight calibration of construction misalignments for 3D scanners built with a 2D laser rangefinder rotating on its optical center. Sensors 14(11), 20 025–20 040 (2014)

    Article  Google Scholar 

  28. Derbel, N.: A discussion on Sugeno fuzzy logic approximations of nonlinear systems. In: 5th Int. Multi-Conf. on Systems, Signals and Devices, Amman, Jordan (2008)

    Google Scholar 

  29. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall (1997)

    Google Scholar 

  30. Morales, J., Martínez, J.L., Mandow, A., Pequeño-Boter, A., García-Cerezo, A.: Design and development of a fast and precise low-cost 3D laser rangefinder. In: IEEE Int. Conf. on Mechatronics, Istanbul, Turkey, pp. 621–626 (2011)

    Google Scholar 

  31. Little, C., Peters, R.: Simulated mobile self-location using 3D range sensing and an a-priori map. In: Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, vol. 2005, pp. 1459–1464 (2005)

    Google Scholar 

  32. Biniaz, A.: Slope preserving terrain simplification - an experimental study. In: Proc. Canadian Conference on Computational Geometry, Vancouver, Canada, pp. 59–62 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Mandow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mandow, A., Cantador, T.J., Reina, A.J., Martínez, J.L., Morales, J., García-Cerezo, A. (2016). Building Fuzzy Elevation Maps from a Ground-Based 3D Laser Scan for Outdoor Mobile Robots. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-319-27146-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27146-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27145-3

  • Online ISBN: 978-3-319-27146-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics