Advertisement

An Adaptive Multi-resolution State Lattice Approach for Motion Planning with Uncertainty

  • A. González-SieiraEmail author
  • Manuel Mucientes
  • Alberto Bugarín
Conference paper
  • 2.6k Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 417)

Abstract

In this paper we present a reliable motion planner that takes into account the kinematic restrictions, the shape of the robot and the motion uncertainty along the path. Our approach is based on a state lattice that predicts the uncertainty along the paths and obtains the one which minimizes both the probability of collision and the cost. The uncertainty model takes into account the stochasticity in motion and observations and the corrective effect of using a Linear Quadratic Gaussian controller. Moreover, we introduce an adaptive multi-resolution lattice that selects the most adequate resolution for each area of the map based on its complexity. Experimental results, for several environments and robot shapes, show the reliability of the planner and the effectiveness of the multi-resolution approach for decreasing the complexity of the search.

Keywords

Motion planning State lattice Multi-resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alterovitz, R., Siméon, T., Goldberg, K.: The stochastic motion roadmap: a sampling framework for planning with Markov motion uncertainty. In: Robotics: Science and Systems, pp. 246–253 (2007)Google Scholar
  2. 2.
    Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 723–730 (2011)Google Scholar
  3. 3.
    González-Sieira, A., Mucientes, M., Bugarín, A.: Anytime motion replanning in state lattices for wheeled robots. In: Workshop on Physical Agents (WAF), pp. 217–224 (2012)Google Scholar
  4. 4.
    Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial intelligence 101(1), 99–134 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Knepper, R., Kelly, A.: High performance state lattice planning using heuristic look-up tables. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3375–3380 (2006)Google Scholar
  6. 6.
    LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5), 378–400 (2001)CrossRefGoogle Scholar
  8. 8.
    Likhachev, M., Ferguson, D.: Planning Long Dynamically Feasible Maneuvers for Autonomous Vehicles. The International Journal of Robotics Research 28(8), 933–945 (2009)CrossRefGoogle Scholar
  9. 9.
    Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic A*: an anytime, replanning algorithm. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 262–271 (2005)Google Scholar
  10. 10.
    Melchior, N.A., Simmons, R.: Particle RRT for path planning with uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1617–1624 (2007)Google Scholar
  11. 11.
    Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Mathematics of operations research 12(3), 441–450 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Pivtoraiko, M., Kelly, A.: Differentially constrained motion replanning using state lattices with graduated fidelity. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2611–2616 (2008)Google Scholar
  13. 13.
    Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics 26(3), 308–333 (2009)CrossRefGoogle Scholar
  14. 14.
    Rodriguez-Mier, P., Gonzalez-Sieira, A., Mucientes, M., Lama, M., Bugarin, A.: Hipster: An open source java library for heuristic search. In: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6. IEEE (2014)Google Scholar
  15. 15.
    Van Den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research 30(7), 895–913 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. González-Sieira
    • 1
    Email author
  • Manuel Mucientes
    • 1
  • Alberto Bugarín
    • 1
  1. 1.Centro de Investigación En Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations