Advertisement

Towards Detailed Tissue-Scale 3D Simulations of Electrical Activity and Calcium Handling in the Human Cardiac Ventricle

  • Qiang Lan
  • Namit Gaur
  • Johannes LangguthEmail author
  • Xing Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9530)

Abstract

We adopt a detailed human cardiac cell model, which has 10000 calcium release units, in connection with simulating the electrical activity and calcium handling at the tissue scale. This is a computationally intensive problem requiring a combination of efficient numerical algorithms and parallel programming. To this end, we use a method that is based on binomial distributions to collectively study the stochastic state transitions of the 100 ryanodine receptors inside every calcium release unit, instead of individually following each ryanodine receptor. Moreover, the implementation of the parallel simulator has incorporated optimizations in form of code vectorization and removing redundant calculations. Numerical experiments show very good parallel performance of the 3D simulator and demonstrate that various physiological behaviors are correctly reproduced. This work thus paves way for high-fidelity 3D simulations of human ventricular tissues, with the ultimate goal of understanding the mechanisms of arrhythmia.

Keywords

Calcium handling Multiscale cardiac tissue simulation Supercomputing 

Notes

Acknowledgements

The first author is supported by a mobility grant within UTFORSK project No. 2013-10091. The third and fourth authors are supported by FRINATEK project No. 214113. We gratefully acknowledge the computing time provided by NOTUR.

References

  1. 1.
    Adler, C., Costabel, U.: Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv. Stud. Card. Struc. Metab. 6, 343–355 (1974)Google Scholar
  2. 2.
    Berridge, M.: Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem. Soc. Trans. 34(2), 228–231 (2006)CrossRefGoogle Scholar
  3. 3.
    Cheng, H., Lederer, W., Cannell, M.B.: Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134), 740–744 (1993)CrossRefGoogle Scholar
  4. 4.
    Gaur, N., Rudy, Y.: Multiscale modeling of calcium cycling in cardiac ventricular myocyte: macroscopic consequences of microscopic dyadic function. Biophys. J. 100(12), 2904–2912 (2011)CrossRefGoogle Scholar
  5. 5.
    Jiang, D., Wang, R., Xiao, B., Kong, H., Hunt, D.J., Choi, P., Zhang, L., Chen, S.W.: Enhanced store overload-induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circ. Res. 97(11), 1173–1181 (2005)CrossRefGoogle Scholar
  6. 6.
    Kubalova, Z., Terentyev, D., Viatchenko-Karpinski, S., Nishijima, Y., Györke, I., Terentyeva, R., da Cuñha, D.N., Sridhar, A., Feldman, D.S., Hamlin, R.L., et al.: Abnormal intrastore calcium signaling in chronic heart failure. Proc. Nat. Acad. Sci. USA 102(39), 14104–14109 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, N., Colombi, B., Memmi, M., Zissimopoulos, S., Rizzi, N., Negri, S., Imbriani, M., Napolitano, C., Lai, F.A., Priori, S.G.: Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia insights from a RyR2 R4496C knock-in mouse model. Circ. Res. 99(3), 292–298 (2006)CrossRefGoogle Scholar
  8. 8.
    Louch, W.E., Bito, V., Heinzel, F.R., Macianskiene, R., Vanhaecke, J., Flameng, W., Mubagwa, K., Sipido, K.R.: Reduced synchrony of Ca2+ release with loss of T-tubulesa comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc. Res. 62(1), 63–73 (2004)CrossRefGoogle Scholar
  9. 9.
    Louch, W.E., Mørk, H.K., Sexton, J., Strømme, T.A., Laake, P., Sjaastad, I., Sejersted, O.M.: T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J. Physiol. 574(2), 519–533 (2006)CrossRefGoogle Scholar
  10. 10.
    Marks, A.R., et al.: Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Investig. 123(1), 46–52 (2013)CrossRefGoogle Scholar
  11. 11.
    Nivala, M., de Lange, E., Rovetti, R., Qu, Z.: Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes. Front. Physiol. 3, 114 (2012)CrossRefGoogle Scholar
  12. 12.
    Nivala, M., Qu, Z.: Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am. J. Physiol.-Heart Circulatory Physiol. 303(3), H341–H352 (2012)CrossRefGoogle Scholar
  13. 13.
    Nivala, M., Song, Z., Weiss, J.N., Qu, Z.: T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling. J. Mol. Cell. Cardiol. 79, 32–41 (2015)CrossRefGoogle Scholar
  14. 14.
    O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7(5), e1002061 (2011)CrossRefGoogle Scholar
  15. 15.
    van Oort, R.J., Garbino, A., Wang, W., Dixit, S.S., Landstrom, A.P., Gaur, N., De Almeida, A.C., Skapura, D.G., Rudy, Y., Burns, A.R., et al.: Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123(9), 979–988 (2011)CrossRefGoogle Scholar
  16. 16.
    Pieske, B., Kretschmann, B., Meyer, M., Holubarsch, C., Weirich, J., Posival, H., Minami, K., Just, H., Hasenfuss, G.: Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92(5), 1169–1178 (1995)CrossRefGoogle Scholar
  17. 17.
    Priori, S.G., Chen, S.W.: Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ. Res. 108(7), 871–883 (2011)CrossRefGoogle Scholar
  18. 18.
    Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46(9), 1166–1168 (1999)CrossRefGoogle Scholar
  19. 19.
    Restrepo, J.G., Weiss, J.N., Karma, A.: Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys. J. 95(8), 3767–3789 (2008)CrossRefGoogle Scholar
  20. 20.
    Song, Z., Ko, C.Y., Nivala, M., Weiss, J.N., Qu, Z.: Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes. Biophys. J. 108(8), 1908–1921 (2015)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Williams, G.S., Chikando, A.C., Tuan, H.T.M., Sobie, E.A., Lederer, W., Jafri, M.S.: Dynamics of calcium sparks and calcium leak in the heart. Biophys. J. 101(6), 1287–1296 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qiang Lan
    • 1
    • 2
    • 3
  • Namit Gaur
    • 2
  • Johannes Langguth
    • 2
    Email author
  • Xing Cai
    • 2
    • 3
  1. 1.National University of Defense TechnologyChangshaChina
  2. 2.Simula Research LaboratoryFornebuNorway
  3. 3.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations