Advertisement

Scalable Access Policy for Attribute Based Encryption in Cloud Storage

  • Jing Wang
  • Chuanhe Huang
  • Jinhai Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9530)

Abstract

Cloud storage provides outsourced storage services in a cost-effective manner. A key challenge in cloud storage is the security and integrity of outsourced data. A security mechanism known as Attribute-Based Encryption (ABE) represents the state-of-the-art in providing fine-grained access control for cloud storage. A critical issue in ABE is the managing of access policy. Policy managing may incur substantial computation and communication overhead in the ABE scheme with unscalable access policy. In this work, we propose a form of access policy named block Linear Secret Sharing Scheme (LSSS) matrix. The scalability of block LSSS matrix provides an efficient policy managing interface for ABE schemes. Thus, the ABE schemes use block LSSS matrix as access policy are light weight in computation and communication, as compared with other schemes during access policy managing. Furthermore, the block LSSS matrix enjoys advantages of efficiency, flexibility and security, bringing a number of improvements in various aspects of ABE.

Keywords

Cloud Data security Access control Attribute-based encryption Access policy management 

Notes

Acknowledgments

This work is supported by the National Science Foundation of China (No.61373040, No.61173137), The Ph.D. Programs Foundation of Ministry of Education of China (20120141110073), Key Project of Natural Science Foundation of Hubei Province (No. 2010CDA004).

References

  1. 1.
    Blakley, G.R., Kabatianskii, G.A.: Linear algebra approach to secret sharing schemes. In: Chmora, A., Wicker, S.B. (eds.) Information Protection 1993. LNCS, vol. 829. Springer, Heidelberg (1994) Google Scholar
  2. 2.
    Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, (ed.) Advances in Cryptology – CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990)Google Scholar
  3. 3.
    Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 27–35. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990) Google Scholar
  5. 5.
    Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)Google Scholar
  6. 6.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Simonis, J., Ashikhmin, A.: Almost affine codes. Des. Codes Crypt. 14(2), 179–197 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chellappa, R.: Intermediaries in Cloud-Computing: A New Computing Paradigm. INFORMS Annual Meeting, Dallas (1997) Google Scholar
  9. 9.
    Wu, J., et al.: Cloud storage as the infrastructure of cloud computing. In: International Conference on Intelligent Computing and Cognitive Informatics, pp. 380–383. IEEE (2010)Google Scholar
  10. 10.
    Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS: a case for cloud storage diversity. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 229–240. ACM (2010)Google Scholar
  11. 11.
    Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996) Google Scholar
  13. 13.
    Nikov, V., Nikova, S.: New monotone span programs from old. IACR Cryptology ePrint Archive 2004, p. 282 (2004)Google Scholar
  14. 14.
    Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity Theory Conference, pp. 102–111 (1993)Google Scholar
  15. 15.
    Goyal, V., et al.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  16. 16.
    Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Yang, K., et al.: Enabling efficient access control with dynamic policy updating for big data in the cloud. In: Proceedings of the IEEE Conference on INFOCOM 2014, pp. 2013–2021. IEEE (2014)Google Scholar
  18. 18.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Zhen, L., Cao, Z., Wong, D.S.: Efficient generation of linear secret sharing scheme matrices from threshold access trees. Cryptology ePrint Archive, Report 2010/374. http://eprint.iacr.org/2010/374
  20. 20.
    Xavier, N., Chandrasekar, V.: Cloud computing data security for personal health record by using attribute based encryption. Bus. Manag. 7(1), 209–214 (2015)Google Scholar
  21. 21.
    Xhafa, F., et al.: Designing cloud-based electronic health record system with attribute-based encryption. Multimedia Tools Appl. 74(10), 3441–3458 (2015)CrossRefGoogle Scholar
  22. 22.
    Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015) Google Scholar
  23. 23.
    Khedkar, S.V., Gawande, A.D.: Data partitioning technique to improve cloud data storage security. Int. J. Comput. Sci. Inf. Technol. 5(3), 3347–3350 (2014)Google Scholar
  24. 24.
    Wei, L., et al.: Security and privacy for storage and computation in cloud computing. Inf. Sci. 258, 371–386 (2014)CrossRefGoogle Scholar
  25. 25.
    Meenakshi, I.K., George, S.: Cloud server storage security using TPA. Int. J. Adv. Res. Comput. Sci. Technol. 2(1), 295–299 (2014)Google Scholar
  26. 26.
    Shetty, J., Anala, M.R., Shobha, G.: An approach to secure access to cloud storage service. Int. J. Res. 2(1), 364–368 (2015)Google Scholar
  27. 27.
    Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer SchoolWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhan UniversityWuhanChina

Personalised recommendations