Advertisement

A New Approach for Vehicle Recognition and Tracking in Multi-camera Traffic System

  • Wenbin Jiang
  • Zhiwei Lu
  • Hai Jin
  • Ye Chi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9530)

Abstract

In order to ensure recognition accuracy, intelligent traffic video tracking system usually requires various types of information. Therefore, multi-features fusion becomes a good choice. In this paper, a new recognition approach for vehicle types based multi-feature fusion is proposed, which is used for vehicle tracking in a multi-camera traffic system. An improved Canny operator is presented for edge detection. SURF (Speeded Up Robust Features) is used for local feature extraction. To improve the performance of distance calculation between features, a refined method based on Hellinger kernel is put forward. A position constraint rule is applied to reduce unnecessary fake matchings. Finally, the information of vehicle types combined with LBP (Local Binary Pattern), HOG (Histogram of Oriented Gradients) is used for a multi-camera vehicle tracking platform, which adopts Hadoop to realize the parallel computing of the system. Experimental results show that the proposed approach has good performance for the platform.

Keywords

Recognition SURF Distance calculation Position constraint Parallel computing 

Notes

Acknowledgment

This work is supported by National Natural Science Foundation of China under grant No. 61133008, National High-tech Research and Development Program of China (863 Program) under grant No. 2012AA010905, and Scientific Research Foundation of Ministry of Education of China-China Mobile under grant No. MCM20122041.

References

  1. 1.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Sun, J., Gu, H.B.: Improved insensitivity to noise image edge detecting method based on the direction information. J. Chin. Comput. Syst. 27(7), 1358–1361 (2006)Google Scholar
  4. 4.
    Anagnostopoulos, C.N., Giannoukos., I., Alexandropoulos, T., Psyllos, A., Loumos, V., Kayafas, E.: Integrated vehicle recognition and inspection system to improve security in restricted access areas. In: Proceedings of 13th International IEEE Conference on Intelligent Transportation Systems (ITSC 2010), pp. 1893–1898. IEEE Press, Piscataway (2010)Google Scholar
  5. 5.
    Sivaraman, S., Trivedi, M.M.: A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans. Intell. Transp. Syst. 11(2), 267–276 (2010)CrossRefGoogle Scholar
  6. 6.
    Dlagnekov, L.: Video-based Car Surveillance: License Plate, Make, and Model Recognition. Ph.D. dissertation, University of California, San Diego (2005)Google Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Petrovic, V.S., Cootes, T.F.: Analysis of features for rigid structure vehicle type recognition. In: Proceedings of 2nd International Forum on Mechanical and Material Engineering, pp. 587–596, Trans Tech Publications Ltd., Zurich-Durnten (2004)Google Scholar
  9. 9.
    Ozcanli, O.C., Tamrakar, A., Kimia, B.B., Mundy, J.L.: Augmenting shape with appearance in vehicle category recognition. In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 935–942. IEEE Press, New York (2006)Google Scholar
  10. 10.
    Wang, Y., He, L., Velipasalar, S.: Real-time distributed tracking with non-overlapping cameras. In: Proceedings of IEEE Conference on Image Processing (ICIP 2010), pp. 697–700. IEEE Press, Piscataway (2010)Google Scholar
  11. 11.
    Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 250–279 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sarkar, S., Boyer, K.L.: On optimal infinite impulse response edge detection filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1154–1171 (1991)CrossRefGoogle Scholar
  13. 13.
    Yi, S., Labate, D., Easley, G., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18(5), 929–941 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Evans, A., Liu, X.: A morphological gradient approach to color edge detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)CrossRefGoogle Scholar
  15. 15.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  16. 16.
    Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)Google Scholar
  17. 17.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of 2004 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. 2, pp. 511–517. IEEE Press, Los Alamitos (2004)Google Scholar
  18. 18.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 840–853 (2007)CrossRefGoogle Scholar
  20. 20.
    Ling, H., Okada, K.: Diffusion distance for histogram comparison. In: Proceedings of 2006 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 246–253. IEEE Press, New York (2006)Google Scholar
  21. 21.
    Pele, O., Werman, M.: A linear time histogram metric for improved SIFT matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 495–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Pele, O., Werman, M.: The quadratic-chi histogram distance family. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 749–762. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Jiang, W., Xiao, C., Jin, H., Zhu, S., Lu, Z.: Vehicle tracking with non-overlapping views for multi-camera surveillance system. In: Proceedings of the 15th IEEE International Conference on High Performance Computing and Communications (HPCC 2013), pp. 1213–1220. IEEE Press, Los Alamitos (2013)Google Scholar
  24. 24.
    Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), pp. 2911–2918. IEEE Press, Los Alamitos (2012)Google Scholar
  25. 25.
    Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Commun. ACM 55(6), 61–69 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations