Skip to main content

Vaccination Against Breast Cancer and its Role in Prevention

  • Chapter
  • First Online:
Trends in Breast Cancer Prevention

Abstract

The immune response against cancers, including breast cancer, are shown to play a critical role in survival. Vaccines have long been hailed as the most effective medical intervention to prevent a disease. While cancer vaccines have mostly been used therapeutically with little success in established breast cancer, their role in early breast cancer appears more promising, and primary prevention of breast cancer by vaccination is now being contemplated. The selection of vaccine targets is a critical issue, since unlike cancers with established viral etiology (e.g. cervical cancer), there is no single cause of breast cancer. Instead, there are multiple subsets of breast cancers including: Luminal A, Luminal B, HER-2, and subsets of basal-like cancer. Each of these types can be antigenically distinct, and present immune targets that may be phenotype-specific or to some degree overlapping between subsets. Three general categories of such targets are being developed as breast cancer vaccines. These include oncodrivers, breast tissue specific antigens, and cancer specific antigens. It is likely that combinations of these vaccine approaches may be best for treatment and prevention. Carriers of high-risk breast cancer mutations represent a potential target patient population for prevention. However, approximately 85 % of breast cancers occur in patients with no identified risk. Recent evidence suggests that a loss of natural immune responses against oncodrivers may identify patients at risk for early breast cancer. Devising tests to identify subjects at risk for breast cancer are needed since these will allow us to focus prevention efforts, including vaccination, on those individuals where such resources are most needed. Preventive breast cancer vaccines may be achievable with our improved understanding of breast cancer biology, and the immune response in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Cancer Institute. SEER cancer statistics factsheets: breast cancer. http://seer.cancer.gov/statfacts/html/breast.html. Accessed 11 May 2015.

  2. World Health Organization (2015) Breast Cancer Prevention and Control. http://www.who.int/cancer/detection/breastcancer/en/index1.html Accessed 31 May 2015

    Google Scholar 

  3. Yabroff KR, Lund J, Kepka D. Economic burden of cancer in the US: estimates, projections, and future research. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dolcetti R. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol. 2015;34:58–69.

    Article  CAS  PubMed  Google Scholar 

  5. Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (Review). Int J Oncol. 2015;46(4):1421–34.

    PubMed  Google Scholar 

  6. Jin L, Xu ZX. Recent advances in the study of HPV-associated carcinogenesis. Virol Sin. 2015;30(2):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.

    Article  CAS  PubMed  Google Scholar 

  8. Schiller JT, Lowy DR. Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol. 2010;64(1):23–41.

    Article  CAS  PubMed  Google Scholar 

  9. Degnim AC, et al. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res Treat. 2014;144(3):539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watson CJ, Kreuzaler PA. Remodeling mechanisms of the mammary gland during involution. Int J Dev Biol. 2011;55:757–62.

    Article  PubMed  Google Scholar 

  11. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    Article  CAS  PubMed  Google Scholar 

  12. Chow MT, Moller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  13. DeNard DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.

    Article  CAS  Google Scholar 

  14. Stewart T, et al. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet. 1995;346:796–8.

    Article  CAS  PubMed  Google Scholar 

  15. Criscitiello C, et al. Immune approaches to the treatment of breast cancer, around the corner? Breast Cancer Res. 2014;204(16):1–8.

    Google Scholar 

  16. Ikeda H, Old LJ, Schreiber RD. The roles of IFN-gamma in protection against rumor development and cancer immunoediting. Cytokine Growth Factor Rev. 2002;13:95–109.

    Article  CAS  PubMed  Google Scholar 

  17. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27(4):462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mbulaiteye SM, Buonaguro FM. Infections and cancer: debate about using vaccines as a cancer control tool. Infect Agents Cancer. 2013;8(16):1–4.

    Google Scholar 

  19. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1:467–75.

    Article  CAS  PubMed  Google Scholar 

  20. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korsching E, et al. Basal carcinoma of the breast revisited: an old entity with new interpretations. J Clin Pathol. 2008;61(5):553–60.

    Article  CAS  PubMed  Google Scholar 

  22. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res. 2015;17(1):52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Meric-Bernstam F, Hung MC. Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy. Clin Cancer Res. 2006;12(21):6326–30.

    Article  CAS  PubMed  Google Scholar 

  24. Vaught DB, et al. HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res. 2012;72(10):2672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stern DF. ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 2008;13(2):215–23.

    Article  PubMed  Google Scholar 

  26. Foy KC, et al. Peptide vaccines and peptidomimetics of EGFR (HER-1) ligand binding domain inhibit cancer cell growth in vitro and in vivo. J Immunol. 2013;191(1):217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peoples GE, et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res. 2008;14(3):797–803.

    Article  CAS  PubMed  Google Scholar 

  28. Mittendorf EA, et al. Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer. 2012;118(10):2594–602.

    Article  CAS  PubMed  Google Scholar 

  29. Fisk B, et al. Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med. 1995;181:2109–17.

    Article  CAS  PubMed  Google Scholar 

  30. Milani A, et al. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol. 2013;24(7):1740–8.

    Article  CAS  PubMed  Google Scholar 

  31. Disis ML, et al. Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein-based vaccine. J Clin Oncol. 2004;22(10):1916–25.

    Article  CAS  PubMed  Google Scholar 

  32. Kitano S, et al. HER2-specific T-cell immune responses in patients vaccinated with truncated HER2protein complexed with nanogels of cholesteryl pullulan. Clin Cancer Res. 2006;12(24):7397–405.

    Article  CAS  PubMed  Google Scholar 

  33. Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96(9):3102–8.

    CAS  PubMed  Google Scholar 

  34. Czerniecki BJ, Koski G, Koldovsky U, et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res. 2007;67(4):1842–52.

    Article  CAS  PubMed  Google Scholar 

  35. Koski GK, et al. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer. J Immunother. 2012;35(1):54–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma A, Koldovsky U, Xu S, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118(17):4354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Page DB, Naidoo J, McArthur HL. Emerging immunotherapy strategies in breast cancer. Immunotherapy. 2014;6(2):195–209.

    Article  CAS  PubMed  Google Scholar 

  38. Norell H, et al. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med. 2010;8:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Datta J, et al. Progressive loss of anti-HER2 CD4+ T-helper Type 1 response in breast tumorigenesis and the potential for immune restoration. OncoImmunology. 2015;17(71).

    Google Scholar 

  40. Takeuchi N, et al. Anti-Her-2/neu immune responses are induced before the development of clinical tumors but declined following tumorigenesis in HER-2/neu transgenic mice. Cancer Res. 2004;64:7588–95.

    Article  CAS  PubMed  Google Scholar 

  41. Asztalos S, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res. 2010;3(3):301–11.

    Article  CAS  Google Scholar 

  42. Barton M, Santucci-Pereira J, Russo J. Molecular pathways involved in pregnancy-induced prevention against breast cancer. Front Endocrinol (Lausanne). 2014;5:213.

    Google Scholar 

  43. Shakhar K, Valdimarsdottir HB, Bovbjerg DH. Heightened risk of breast cancer following pregnancy: could lasting systemic immune alterations contribute? Cancer Epidemiol Biomarkers Prev. 2007;16(6):1082–6.

    Article  CAS  PubMed  Google Scholar 

  44. Watson M, Fleming T. Mammaglobin, a mammary-specific member of the uteroglobin gene family is overexpressed in human breast cancer. Cancer Res. 1996;56:860–5.

    CAS  PubMed  Google Scholar 

  45. Jaini R, et al. An autoimmune-mediated strategy for prophylactic breast cancer vaccination. Nat Med. 2010;16(7):799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walker RA. The demonstration of α lactalbumin in human breast carcinomas. J Pathol. 1979;129(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  47. Tiriveedhi V, et al. Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ ICOShi T cells. Breast Cancer Res Treat. 2013;138(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  48. Tiriveedhi V, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res. 2014;20(23):5964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tuohy VK, Jaini R. Prophylactic cancer vaccination by targeting functional non-self. Ann Med. 2011;43(5):356–65.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tuohy VK. Retired self-proteins as vaccine targets for primary immunoprevention of adult-onset cancers. Expert Rev Vaccines. 2014;13(12):1447–62.

    Article  CAS  PubMed  Google Scholar 

  51. Kesaraju P, et al. Experimental autoimmune breast failure: a model for lactation insufficiency, postnatal nutritional deprivation, and prophylactic breast cancer vaccination. Am J Pathol. 2012;181(3):775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vonderheide RH. Prospects and challenges of building a cancer vaccine targeting telomerase. Biochimie. 2008;90(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  53. Pavlidou A, Kroupis C, Dimas K. Association of survivin splice variants with prognosis and treatment of breast cancer. World J Clin Oncol. 2014;5(5):883–94.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marshall JL, et al. Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol. 2005;23(4):720–31.

    Article  CAS  PubMed  Google Scholar 

  55. Domchek SM, et al. Telomerase-specific T-cell immunity in breast cancer: effect of vaccination on tumor immunosurveillance. Cancer Res. 2007;67(21):10546–55.

    Article  CAS  PubMed  Google Scholar 

  56. Kotsakis A, et al. Clinical outcome of patients with various advanced cancer types vaccinated with an optimized cryptic human telomerase reverse transcriptase (TERT) peptide: results of an expanded phase II study. Ann Oncol. 2012;23(2):442–9.

    Article  CAS  PubMed  Google Scholar 

  57. Schmitz M, et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res. 2000;60(17):4845–9.

    CAS  PubMed  Google Scholar 

  58. Xi HB, et al. Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer. Biol Pharm Bull. 2015;38(6):827–35.

    Article  CAS  PubMed  Google Scholar 

  59. Tsuruma T, et al. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer. J Transl Med. 2008;6:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res. 1996;63:298–304.

    Article  CAS  PubMed  Google Scholar 

  61. Gaidzik N, et al. Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains-induction of a strong immune response against breast tumor tissues. Angew Chem Int Ed Engl. 2011;50(42):9977–81.

    Article  CAS  PubMed  Google Scholar 

  62. Gaidzik N, Westerlind U, Kunz H. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chem Soc Rev. 2013;42(10):4421–42.

    Article  CAS  PubMed  Google Scholar 

  63. Graves HL, et al. High survivin expression in ductal carcinoma in situ (DCIS): a potential therapeutic target. Curr Cancer Ther Rev. 2012;8:189–96.

    Article  CAS  Google Scholar 

  64. Shpitz B, et al. Telomerase activity in ductal carcinoma in situ. Breast Cancer Res Treat. 1999;58(1):65–59.

    Article  CAS  PubMed  Google Scholar 

  65. Diaz LK, Wiley EL, Morrow M. Expression of epithelial mucins MUC1, MUC2, and MUC3 in ductal carcinoma in situ of the breast. Breast J. 2001;7(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  66. Kimura T, et al. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res. 2013;6(1):18–26.

    Article  CAS  Google Scholar 

  67. Al-Hajj M, Wicha MS, Benito Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reim F, Dombrowski Y, Ritter C, et al. Immunoselection of breast and ovarian cancer cells with Trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69:8058–66.

    Article  CAS  PubMed  Google Scholar 

  69. Bane A, Viloria-Petit A, Pinnaduwage D, et al. Clinical-pathologic significance of cancer stem cell marker expression in familial breast cancers. Breast Cancer Res Treat. 2013;140(1):195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bittner JJ. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science. 1936;84(2172):162.

    Article  CAS  PubMed  Google Scholar 

  71. Melana SM, Nepomnaschy I, Sakalian M, et al. Characterization of viral particles isolated from primary cultures of human breast cancer cells. Cancer Res. 2007;67(18):8960–5.

    Article  CAS  PubMed  Google Scholar 

  72. Liu B, Wang Y, Melana SM, et al. Identification of a proviral structure in human breast cancer. Cancer Res. 2001;61(4):1754–9.

    CAS  PubMed  Google Scholar 

  73. Wang Y, Holland JF, Bleiweiss IJ, et al. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res. 1995;55(22):5173–9.

    CAS  PubMed  Google Scholar 

  74. Levine PH, Pogo BG, Klouj A, et al. Increasing evidence for a human breast carcinoma virus with geographic differences. Cancer. 2004;101(4):721–6.

    Article  PubMed  Google Scholar 

  75. Wang Y, Melana SM, Baker B, et al. High prevalence of MMT-like env gene sequences in gestational breast cancer. Med Oncol. 2003;20(3):233–6.

    Article  CAS  PubMed  Google Scholar 

  76. Levine PH, Young HA, Mark L, Rojowsky H, Holland JF, Pogo BG. Increased detection of breast cancer virus sequences in inflammatory breast cancer. Adv Tumor Virol. 2009;1:3–7.

    Google Scholar 

  77. Yu Y, Morimoto T, Sasa M, et al. HPV33 DNA in premalignant and malignant breast lesions in Chinese and Japanese populations. Anticancer Res. 1999;6B:5057–61.

    Google Scholar 

  78. Damin AP, Karam R, Zettler CG, et al. Evidence for an association of human papillomavirus and breast carcinomas. Breast Cancer Res Treat. 2004;84(2):131–7.

    Article  CAS  PubMed  Google Scholar 

  79. De Villiers EM, Sandstrom RE, Zur Hausen H, et al. Presence of papillomavirus sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast. Breast Cancer Res. 2005;7(1):R1–11.

    Article  PubMed  CAS  Google Scholar 

  80. Khan NA, Castillo A, Koriyama C, et al. Human papillomavirus detected in female breast carcinomas in Japan. Br J Cancer. 2008;99(3):408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mendizabal-Ruiz AP, MoraliesJA R-JLJ, et al. Low frequency of human papillomavirus DNA in breast cancer tissue. Breast Cancer Res Treat. 2009;114(1):189–94.

    Article  CAS  PubMed  Google Scholar 

  82. Heng B, Glenn WK, Ye Y, et al. Human papilloma virus is associated with breast cancer. Br J Cancer. 2009;101(8):1345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lawson JS, Glenn WK, Heng B, et al. Koilocytes indicate a role for human papilloma virus in breast cancer. Br J Cancer. 2009;101(8):1351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mazouni C, Fina F, Romain S, et al. Outcome of Epstein-Barr virus-associated breast cancer. Mol Clin Oncol. 2015;3(2):295–8.

    PubMed  Google Scholar 

  85. Aboulkassim T, Yasmeen A, Akil N. Incidence of Epstein-Barr virus in Syrian women with breast cancer: a tissue microarray study. Hum Vaccin Immunother. 2015;11(4):951–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yahia ZA, Adam AA, Elgizouli M, et al. Epstein Barr virus: a prime candidate of breast cancer aetiology in Sudanese patients. Infect Agent Cancer. 2014;9(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. McCall SA, Lichy JH, Bijwaard KE, et al. Epstein-Barr virus detection in ductal carcinoma of the breast. J Nat Cancer Inst. 2001;93(2):148–50.

    Article  CAS  PubMed  Google Scholar 

  88. Morales-Sanchez A, Molina-Munoz T, Martinez-Lopez JLE, et al. No association between Epstein-Barr Virus and mouse mammary tumor virus with breast cancer in Mexican women. Sci Rep. 2013;3:2970.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Baltzell K, Buehring GC, Krishnamurthy S, et al. Epstein-Barr virus is seldom found in mammary epithelium of breast cancer tissue using in situ molecular methods. Breast Cancer Res Treat. 2012;132(1):267–74.

    Article  PubMed  Google Scholar 

  90. de Cremoux P, Thioux M, Lebigot I, et al. No evidence of human papillomavirus DNA sequences in invasive breast carcinoma. Breast Cancer Res Treat. 2008;109(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  91. Murray PG. Epstein–Barr virus in breast cancer: artefact or aetiological agent? J Pathol. 2006;209:427–9.

    Article  CAS  PubMed  Google Scholar 

  92. Koski GK, Schwartz GN, et al. Calcium mobilization in human myeloid cells results in acquisition of individual dendritic cell-like characteristics through discrete signaling pathways. J Immunol. 1999;163(1):82–92.

    CAS  PubMed  Google Scholar 

  93. Glenny AT, Pope CG, Waddington H, Wallace U. Immunological notes XVII-XXIV. J Pathol Bacteriol. 1926;29:31–40.

    Article  CAS  Google Scholar 

  94. Grun JL, Maurer PH. Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell Immunol. 1989;121(1):134–45.

    Article  CAS  PubMed  Google Scholar 

  95. Martin M, Michalek SM, Katz J. Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect Immun. 2003;71(5):2498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wheeler AW, Marshall JS, Ulrich JT. A Th1-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol. 2001;126(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein DI, Aoki FY, Tyring SK, et al. Safety and immunogenicity of glycoprotein D-adjuvant genital herpes vaccine. Clin Infect Dis. 2005;40(9):1271–81.

    Article  CAS  PubMed  Google Scholar 

  98. Bernstein DI, Atmar RL, Lyon GM, et al. Norovirus vaccine against experimental human GII.4 virus illness: a challenge study in healthy adults. J Infect Dis. 2015;211(6):870–8.

    Article  PubMed  Google Scholar 

  99. Vantomme V, Dantinne C, Amrani N, et al. Immunologic analysis of a phase I/II study of a vaccination with MAGE-3 protein combined with the AS02B adjuvant in patients with MAGE-3-positive tumors. J Immunother. 2004;27(2):124–35.

    Article  CAS  PubMed  Google Scholar 

  100. Neidhart J, Allen KO, Barlow DL, et al. Immunization of colorectal cancer patients with recombinant baculovirus-derived KSA (ep-CAM) formulated with monophosphoryl lipid A in liposomal emulsion, with and without granulocyte-macrophage colony-stimulating factor. Vaccine. 2004;22(5-6):773–80.

    Article  CAS  PubMed  Google Scholar 

  101. Sabbatini P, Tsuji T, Ferran L, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–508.

    Article  CAS  PubMed  Google Scholar 

  102. Pollack IF, Jakacki RI, Butterfielf LH, et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol. 2014;32(19):2050–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Goldinger SM, Dummer R, Baumgaertner P. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+ T-cell responses in melanoma patients. Eur J Immunol. 2012;42(11):3049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lucas JA, Menke J, Rabacal WA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008;181(4):2513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Doyle AM, Mullen AC, Villarino AV, et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J Exp Med. 2001;194(7):893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer—preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37(5):430–9.

    Article  CAS  PubMed  Google Scholar 

  108. Finn PW, He H, Wang Y, et al. Synergistic induction of CTLA-4 expression by costimulation with TCR plus CD28 signals mediated by increased transcription and messenger ribonucleic acid stability. J Immunol. 1997;158(9):4074–81.

    CAS  PubMed  Google Scholar 

  109. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA. CTLA-4: a negative regulator of autoimmune disease. J Exp Med. 1996;184(2):783–8.

    Article  CAS  PubMed  Google Scholar 

  110. Weber J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 2007;12(7):864–72.

    Article  CAS  PubMed  Google Scholar 

  111. Eigentler TK, Schlaak M, Hassel JC, Loquai C, Stoffels I, Gutzmer R, Pätzold S, Mohr P, Keller U, Starz H, Ulrich J, Tsianakas A, Kähler K, Hauschild A, Janssen E, Schuler-Thurner B, Weide B, Garbe C. Effectiveness and tolerability of ipilimumab: experiences from 198 patients included in a named-patient program in various daily-practice settings and multiple institutions. J Immunother. 2014;37(7):374–81.

    Article  CAS  PubMed  Google Scholar 

  112. Weber J, Hamid O, Amin A, O’Day S, Masson E, Goldberg SM, Williams D, Parker SM, Chasalow SD, Alaparthy S, Wolchok JD. Randomized phase I pharmacokinetic study of ipilimumab with or without one of two different chemotherapy regimens in patients with untreated advanced melanoma. Cancer Immun. 2013;13:7.

    PubMed  PubMed Central  Google Scholar 

  113. Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, Dahut WL, Schlom J, Gulley JL. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):501–8.

    Article  CAS  PubMed  Google Scholar 

  114. Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol. 2014;290(1):72–9.

    Article  CAS  PubMed  Google Scholar 

  115. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  116. Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med. 2003;9(12):1477–83.

    Article  CAS  PubMed  Google Scholar 

  117. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, Benoit S, Ireland G, Luxenberg D, Askew GR, Milarski KL, Groves C, Brown T, Carito BA, Percival K, Carreno BM, Collins M, Marusic S. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2007;182(1-2):124–34.

    Article  CAS  PubMed  Google Scholar 

  118. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  120. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, Leming PD, Lipson EJ, Puzanov I, Smith DC, Taube JM, Wigginton JM, Kollia GD, Gupta A, Pardoll DM, Sosman JA, Hodi FS. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J ClinOncol. 2014;32(10):1020–30.

    Article  CAS  Google Scholar 

  121. Dsis ML, Park KH. Immunomodulation of breast cancer via tumor antigen specific Th1. Cancer Res Treat. 2009;41(3):117–21.

    Article  Google Scholar 

  122. Mittendorf EA, Peoples GE, Singletary SE. Breast cancer vaccines: promise for the future or pipedream? Cancer. 2007;110(8):1677–86.

    Article  CAS  PubMed  Google Scholar 

  123. Menard S, et al. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res. 1997;3(5):817–9.

    CAS  PubMed  Google Scholar 

  124. Mahmoud SMA, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  125. Rosenberg S, Yang J, Restifo N. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Czerniecki BJ, Roses RE, Koski GK. Development of vaccines for high-risk ductal carcinoma in situ of the breast. Cancer Res. 2007;67(14):6531–4.

    Article  CAS  PubMed  Google Scholar 

  127. Andersen MH, Sorensen RB, Schrama D, et al. Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother. 2008;57:1735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Menard C, Martin F, Apetoh L, et al. Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother. 2008;57:1579–87.

    Article  CAS  PubMed  Google Scholar 

  129. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73.

    Article  CAS  PubMed  Google Scholar 

  130. Yu B, Kusmartsev S, Cheng F, et al. Effective combination of chemotherapy and dendritic cell administration for the treatment of advanced-stage experimental breast cancer. Clin Cancer Res. 2003;9:285–94.

    CAS  PubMed  Google Scholar 

  131. Javeed A, Ashraf M, Riaz A, et al. Paclitaxel and immune system. Eur J Pharm Sci. 2009;38:283–90.

    Article  CAS  PubMed  Google Scholar 

  132. Frazier JL, Han JE, et al. Immunotherapy combined with chemotherapy in the treatment of tumors. Neurosurgery Clinics. 2010;21(1):187–94.

    PubMed  Google Scholar 

  133. Apetoh L, Ladoire S et al. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol. 2015 (In Press).

    Google Scholar 

  134. Rosen PP, Braun DW, Kinne DE. The clinical significance of pre-invasive breast carcinoma. Cancer. 1980;46:919–25.

    Article  CAS  PubMed  Google Scholar 

  135. Nielsen M, Jensen J, Andersen J. Precancerous and cancerous breast lesions during lifetime and autopsy: a study of 83 women. Cancer. 1984;54:612–5.

    Article  CAS  PubMed  Google Scholar 

  136. Benson JR, Wishart GC. Predictors of recurrence for ductal carcinoma in situ after breast-conserving surgery. Lancet Oncol. 2014;14(9):348–57.

    Article  Google Scholar 

  137. Williams KE, Barnes NLP, Cramer A, et al. Molecular Phenotypes of DCIS predict overall and invasive recurrence. Ann Oncol. 2015;26(5):1019–25.

    Article  CAS  PubMed  Google Scholar 

  138. Allred DC, Clark GM, Molina R, et al. Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol. 1992;23:974–9.

    Article  CAS  PubMed  Google Scholar 

  139. Roses RE, Paulson EC, Sharma A, et al. HER-2/neu overexpression as a predictor for the transition from in situ to invasive breast cancer. Cancer Epidemiol Biomarkers Prev. 2009;18:OF1–4.

    Article  Google Scholar 

  140. Harada S, Mick R, Roses RE, et al. The significance of HER-2/neu receptor positivity and immunophenotype in ductal carcinoma in situ with early invasive disease. J Surg Oncol. 2011;104(5):458–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barnes NLP, Khavari S, Boland GP, et al. Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast. Clin Cancer Res. 2005;11:2163–8.

    Article  CAS  PubMed  Google Scholar 

  142. Severson TM, Peeters J, Majewski I, et al. BRCA1-like signature in triple negative breast cancer: molecular and clinical characterization reveals subgroups with therapeutic potential. Mol Oncol. 2015;9(8):1528–38.

    Article  CAS  PubMed  Google Scholar 

  143. Albrektsen G, Heuch I, Hansen S, Kvåle G. Breast cancer risk by age at birth, time since birth and time intervals between births: exploring interaction effects. Br J Cancer. 2005;92(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  144. Liu Q, Wuu J, Lambe M, Hsieh S-F, Ekbom A, Hsieh C-C. Transient increase in breast cancer risk after giving birth: postpartum period with the highest risk (Sweden). Cancer Causes Control. 2002;13:299–305.

    Article  PubMed  Google Scholar 

  145. Callihan EB, Gao D, Jindal S, Lyons TR, Manthey E, Edgerton S, et al. Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Cancer Res Treat. 2013;138(2):549–59.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Barton M, Santucci-Pereira J, Russo J. Molecular pathways involved in pregnancy-induced prevention against breast cancer. Front Endocrinol. 2014;5:213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Czerniecki, B.J., Nocera, N., Lowenfeld, L., Showalter, L., Koski, G. (2016). Vaccination Against Breast Cancer and its Role in Prevention. In: Russo, J. (eds) Trends in Breast Cancer Prevention. Springer, Cham. https://doi.org/10.1007/978-3-319-27135-4_10

Download citation

Publish with us

Policies and ethics