Skip to main content

Partitioning of Hypergraph Modeled Complex Networks Based on Information Entropy

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9529))

Abstract

Complex networks with nonuniform degree distribution characteristics are called scale-free networks, which can be divided into several natural imbalanced communities. Hypergraph is good at modeling complex networks, and balanced partitioning. But traditional hypergraph partitioning tools with balance constraints could not achieve good partitioning results for nature imbalanced datasets. In order to partition a complex network into “natural” structure, and reduce the inter-part communication cost simultaneously, we make three contributions in this paper. First, we use an information entropy expression considering degree distribution to describe the complex networks. Second, we put forward a partitioning tool named EQHyperpart, which uses complex network information Entropy based modularity Q to direct the partitioning process. Finally, evaluation tests are performed on modern scale-free networks and some classical real world datasets. Experimental results show that EQHyperpart can achieve a tradeoff between modularity retaining and cut size minimizing of hypergraph modeled complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heintz, B., Chandra, A.: Beyond graphs: toward scalable hypergraph analysis systems. ACM SIGMETRICS Perform. Eval. Rev. 41, 94–97 (2014)

    Article  Google Scholar 

  2. Xie, Z., Yi, D.Y., Ouyang, Z.Z.: Hyperedge communities and modularity reveal structure for documents. Chin. Phys. Lett. 29, 38902–38905 (2012)

    Article  Google Scholar 

  3. Turk, A., Selvitopi, R.O., Ferhatosmanoglu, H., Cevdet, A.: Temporal workload-aware replicated partitioning for social networks. IEEE Trans. Knowl. Data Eng. 26, 2832–2845 (2014)

    Article  Google Scholar 

  4. Yang, W., Wang, G.: Directed social hypergraph data allocation strategy in online social networks. J. Chin. Comput. Syst. 36, 1559–1564 (2015)

    Google Scholar 

  5. Guzzo, A., Pugliese, A., Rullo, A., Saccà, D.: Intrusion detection with hypergraph-based attack models. In: Croitoru, M., Rudolph, S., Woltran, S., Gonzales, C. (eds.) GKR 2013. LNCS, vol. 8323, pp. 58–73. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Waters, N.: Social Network Analysis. In: Fischer, M.M., Nijkamp, P. (eds.) Handbook of Regional Science, pp. 725–740. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. George, K., Rajat, A., Vipin, K., Shashi, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. VLSI Syst. 7, 69–79 (1999)

    Article  Google Scholar 

  8. Yaros, J.R.: Imbalanced hypergraph partitioning and improvements for consensus clustering. In: 25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 358–365. IEEE Press, Herndon (2013)

    Google Scholar 

  9. George, K., Vipin, K.: Multilevel k-way hypergraph partitioning. In: 36th Design Automation Conference, pp. 343–348 (1999)

    Google Scholar 

  10. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  11. Barabási, A., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–69 (2003)

    Article  Google Scholar 

  12. Boltzmann, L.: Further studies on the thermal equilibrium of gas molecules. The Kinetic Theory of Gases. History of Modern Physical Sciences 1, 262–349 (2003)

    Article  Google Scholar 

  13. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borndörfer, R., Heismann, O.: The hypergraph assignment problem. Discrete Optim. 15, 15–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–308 (1970)

    Article  MATH  Google Scholar 

  16. Fiduccia, C., Mattheyses, R.: A linear-time heuristic for improving network partitions. In: 19th Conference on Design Automation, pp. 175–181 (1982)

    Google Scholar 

  17. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: application in VLSI domain. In: 34th Proceedings of the ACM Annual Design Automation Conference, NewYork, pp. 526–529 (1997)

    Google Scholar 

  18. Deveci, M., Kaya, K., Ucar, B., Çatalyürek, Ü.V.: Hypergraph partitioning for multiple communication cost metrics: model and methods. J. Parallel Distrib. Comput. 77, 69–83 (2015)

    Article  Google Scholar 

  19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 292–313 (2004)

    Google Scholar 

  20. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 279–307 (2004)

    Google Scholar 

  21. He, J., Chen, D.: A fast algorithm for community detection in temporal network. Physica A Stat. Mech. Appl. 429, 87–94 (2015)

    Article  Google Scholar 

  22. Brutz, M., Meyer, F.G.: A Modular Multiscale Approach to Overlapping Community Detection. Physics and Society. arXiv:1501.05623 (2015)

  23. Deng, X., Wang, B., Wu, B.: Modularity modeling and evaluation in community detecting of complex network based on information entropy. J. Comput. Res. Develop. 49, 725–734 (2012)

    Google Scholar 

  24. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A Stat. Mech. Appl. 281, 69–77 (2000)

    Article  Google Scholar 

  25. Website of Mark Newman. http://www-personal.umich.edu/~mejn/netdata/

  26. UCI Network Data Repository. http://networkdata.ics.uci.edu/

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China under Grant Numbers 61272151, 61472451, and 61402543, the International Science & Technology Cooperation Program of China under Grant Number 2013DFB10070, the China Hunan Provincial Science & Technology Program under Grant Number 2012GK4106, and the “Mobile Health" Ministry of Education - China Mobile Joint Laboratory (MOE-DST No. [2012]311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, W., Wang, G., Bhuiyan, M.Z.A. (2015). Partitioning of Hypergraph Modeled Complex Networks Based on Information Entropy. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9529. Springer, Cham. https://doi.org/10.1007/978-3-319-27122-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27122-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27121-7

  • Online ISBN: 978-3-319-27122-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics