Skip to main content

Urban Traffic Congestion Prediction Using Floating Car Trajectory Data

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9529)

Abstract

Traffic congestion prediction is an important precondition to promote urban sustainable development. Nevertheless, there is a lack of a unified prediction method to address the performance metrics, such as accuracy, instantaneity and stability, systematically. In the paper, we propose a novel approach to predict the urban traffic congestion efficiently with floating car trajectory data. Specially, an innovative traffic flow prediction method utilizing particle swarm optimization algorithm is responsible for calculating the traffic flow parameters. Then, a congestion state fuzzy division module is applied to convert the predicted flow parameters to citizens’ cognitive congestion states. We conduct extensive experiments with real floating car data and the experimental results show that our proposed method has advantage in terms of accuracy, instantaneity and stability.

Keywords

  • Floating car
  • Particle swarm optimization
  • Traffic congestion prediction
  • Traffic flow prediction
  • Fuzzy comprehensive evaluation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zheng, Y., Capra, L., Wolfson, O., et al.: Urban computing: concepts, methodologies, and applications. ACM Trans. Intell. Syst. Technol. (TIST) 5(3), 38 (2014)

    Google Scholar 

  2. Younes, M.B., Boukerche, A.: A performance evaluation of an efficient traffic congestion detection protocol (ECODE) for intelligent transportation systems. Ad Hoc Netw. 24, 317–336 (2015)

    CrossRef  Google Scholar 

  3. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (2015). doi:10.1145/2743025

    Google Scholar 

  4. Kong, Q.J., Zhao, Q., Wei, C., et al.: Efficient traffic state estimation for large-scale urban road networks. IEEE Trans. Intell. Transp. Syst. 14(1), 398–407 (2013)

    CrossRef  Google Scholar 

  5. Kong, Q.J., Li, Z., Chen, Y., et al.: An approach to urban traffic state estimation by fusing multisource information. IEEE Trans. Intell. Transp. Syst. 10(3), 499–511 (2009)

    CrossRef  Google Scholar 

  6. Zhang, J.D., Xu, J., Liao, S.S.: Aggregating and sampling methods for processing GPS data streams for traffic state estimation. IEEE Trans. Intell. Transp. Syst. 14(4), 1629–1641 (2013)

    CrossRef  Google Scholar 

  7. Li, L., Chen, X., Zhang, L.: Multimodel ensemble for freeway traffic state estimations. IEEE Trans. Intell. Transp. Syst. 15(3), 1323–1336 (2014)

    CrossRef  Google Scholar 

  8. Feng, Y., Hourdos, J., Davis, G.A.: Probe vehicle based real-time traffic monitoring on urban roadways. Transp. Res. Part C Emerg. Technol. 40, 160–178 (2014)

    CrossRef  Google Scholar 

  9. Shankar, H., Raju, P.L.N., Rao, K.R.M.: Multi model criteria for the estimation of road traffic congestion from traffic flow information based on fuzzy logic. J. Transp. Technol. 2, 50 (2012)

    CrossRef  Google Scholar 

  10. Xu, Y., Wang, B., Kong, Q., et al.: Spatio-temporal variable selection based support vector regression for urban traffic flow prediction. In: Proceeding of the 93rd Annual Meeting of the Transportation Research Board, Washington, DC, pp. 14–1994 (2014)

    Google Scholar 

  11. Hong, W.C., Dong, Y., Zheng, F., et al.: Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl. Math. Comput. 217(15), 6733–6747 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Li, M.W., Hong, W.C., Kang, H.G.: Urban traffic flow forecasting using Gauss–SVR with cat mapping, cloud model and PSO hybrid algorithm. Neuro Comput. 99, 230–240 (2013)

    Google Scholar 

  13. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 27, 219–232 (2013)

    CrossRef  Google Scholar 

  14. Wang, F., Tan, G., Deng, C., et al.: Real-time traffic flow forecasting model and parameter selection based on ε-SVR. In: Proceedings of the 7th IEEE World Congress on Intelligent Control and Automation, pp. 2870–2875. Chongqing, China (2008)

    Google Scholar 

  15. Chen, H., Rakha, H.A., Sadek, S.: Real-time freeway traffic state prediction: a particle filter approach. In: Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 626–631. Washington, DC, USA (2011)

    Google Scholar 

  16. Dunne, S., Ghosh, B.: Regime-based short-term multivariate traffic condition forecasting algorithm. J. Transp. Eng. 138(4), 455–466 (2011)

    CrossRef  Google Scholar 

  17. Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C Emerg. Technol. 19(4), 606–616 (2011)

    CrossRef  Google Scholar 

  18. Zhang, X., Onieva, E., Perallos, A., et al.: Hierarchical fuzzy rule-based system optimized with genetic algorithms for short term traffic congestion prediction. Transp. Res. Part C Emerg. Technol. 43(1), 127–142 (2014)

    CrossRef  Google Scholar 

  19. Herring, R., Hofleitner, A., Amin, S., et al.: Using mobile phones to forecast arterial traffic through statistical learning. In: Proceedings of the 89th Transportation Research Board Annual Meeting, pp. 10–2493. Washington DC, USA (2010)

    Google Scholar 

  20. Castro, P.S., Zhang, D., Li, S.: Urban traffic modelling and prediction using large scale taxi GPS traces. In: Kay, J., Lukowicz, P., Tokuda, H., Olivier, P., Krüger, A. (eds.) Pervasive 2012. LNCS, vol. 7319, pp. 57–72. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  21. Zhou, X., Wang, W., Yu, L.: Traffic flow analysis and prediction based on GPS data of floating cars. In: Lu, W., Cai, G., Liu, W., Xing, W. (eds.) Information Technology. LNEE, vol. 210, pp. 497–508. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    CrossRef  Google Scholar 

  23. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4(2), 1942–1948 (1995)

    CrossRef  Google Scholar 

  24. http://www.datatang.com/data/44502

  25. Beijing Traffic Development Research Center. The transportation development annual report at 2012 of Beijing city. http://www.bjtrc.org.cn/JGJS.aspx?id=5.2&Menu=GZCG (2012)

Download references

Acknowledgments

This work was partially supported by the Natural Science Foundation of China under Grants No. 61203165 and No. 61174174, the Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, P.R. China No. SCIP2012001, and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjie Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Q., Wang, J., Song, X., Kong, X., Xu, Z., Zhang, B. (2015). Urban Traffic Congestion Prediction Using Floating Car Trajectory Data. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9529. Springer, Cham. https://doi.org/10.1007/978-3-319-27122-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27122-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27121-7

  • Online ISBN: 978-3-319-27122-4

  • eBook Packages: Computer ScienceComputer Science (R0)