Advertisement

Analyzing Complex Organizational Arguments with Logical Model Building

  • Gábor PéliEmail author
Chapter
Part of the FGF Studies in Small Business and Entrepreneurship book series (FGFS)

Abstract

This chapter demonstrates the application of a qualitative formal method, logical formalization, to organization and management theory. Organizational arguments are usually phrased out in some natural language in the first place. After separating the premises (facts, definitions) of a natural language argument from its conclusions (predictions), this preprocessed text is translated into a logical language. Then, experimentation can begin if the logical formulae standing for the verbal premises imply the putative conclusions as formal theorems. If not, what kind of modifications can make these outcomes follow? What other theorems are implied from the same argument core? A substantial advantage of using symbolic logic over many branches of applied mathematics is that logical models can quite closely map the intended meaning of assertive sentences, while the deduction of conclusions can proceed with the rigor of mathematical proofs. The examples highlight how different logical languages, different dialects, can be used to the idiosyncrasies of the subject. The proof and the translation process from natural language statements to logical models are supported by user-friendly theorem-prover softwares. The appliers of the method need not be logic experts; what they need are analytical skills, sharp eyes at formula evaluation, and some stamina. The promise of using symbolic logic is combining the flexibility of qualitative reasoning with exactness in drawing conclusions from complex arguments. The chapter is to show how and in which extent logical formalization can fulfill this promise.

Keywords

Deductive reasoning Logical model Organization science 

References

  1. Barnett, W. P. (2008). The red queen among organizations: How competitiveness evolves. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  2. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Bruggeman, J. P., Grunow, D., Leenders, M. A. A., Vermeulen, I., & Kuilman, J. G. (2012). Market positioning: The shifting effects of niche overlap. Industrial and Corporate Change, 21(6), 1451–1477.CrossRefGoogle Scholar
  4. Bruggeman, J. P., & Vermeulen, I. (2002). A logical toolkit for theory (re)construction. Sociological Methodology, 32(1), 183–217.CrossRefGoogle Scholar
  5. Cinà, G., & Endriss, U. (2015). A syntactic proof of Arrow’s theorem in a modal logic of social choice functions. Institute for Logic, Language and Computation, University of Amsterdam. Retrieved from https://staff.fnwi.uva.nl/u.endriss/pubs/files/CinaEndrissAAMAS2015.pdf
  6. da Costa, N. C. A., Krause, D., & Bueno, O. (2007). Paraconsistent logics and paraconsistency. In D. Jacquette (Ed.), Philosophy of logic (pp. 791–912). Amsterdam: North-Holland.CrossRefGoogle Scholar
  7. Gamut, L. T. F. (1991). Logic, language and meaning. Chicago: University of Chicago Press.Google Scholar
  8. García-Díaz, C. E., & van Witteloostuijn, A. (2011). Firm entry diversity, resource space heterogeneity and market structure. In S. Osinga, G.-J. Hofstede, & T. Verwaart (Eds.), Emergent results of artificial economics (Lecture notes in economics and mathematical systems, Vol. 652, pp. 153–164). Berlin: Springer.CrossRefGoogle Scholar
  9. Gomez, T., & Bosman, S. (2014). The effect of income inequality on economic growth: A logical formalization. Unpublished manuscript. School of Economics, Utrecht University, Utrecht, The Netherlands.Google Scholar
  10. Hannan, M. T., & Freeman, J. (1984). Structural inertia and organizational change. American Sociological Review, 49(2), 149–164.CrossRefGoogle Scholar
  11. Hannan, M. T., & Freeman, J. (1989). Organizational ecology. Cambridge, MA: Harvard University Press.Google Scholar
  12. Hannan, M. T., Pólos, L., & Carroll, G. R. (2007). Logics of organization theory: Audiences, codes, and ecologies. Princeton, NJ: Princeton University Press.Google Scholar
  13. Hsu, G., Hannan, M. T., & Pólos, L. (2011). Typecasting, legitimation, and form emergence: A formal theory. Sociological Theory, 29(2), 97–123.CrossRefGoogle Scholar
  14. Kamps, J. (2000). A logical approach to computational theory building with applications to sociology. Doctoral dissertation, University of Amsterdam. Retrieved from http://humanities.uva.nl/~kamps/publications/2000/kamp:logi00.pdf
  15. Kamps, J., & Masuch, M. (1997). Partial deductive closure: Logical simulation and management science. Management Science, 43(9), 1229–1245.CrossRefGoogle Scholar
  16. Kamps, J., & Pólos, L. (1999). Reducing uncertainty: A formal theory of Organizations in Action. American Journal of Sociology, 104(6), 1774–1810.CrossRefGoogle Scholar
  17. Kuilman, J. G., Vermeulen, I., & Li, J. T. (2009). The consequents of organizer ecologies: A logical formalization. Academy of Management Review, 34(2), 253–272.CrossRefGoogle Scholar
  18. Kuipers, B. (2001). Qualitative simulation. In R. Meyers (Ed.), Encyclopedia of physical science and technology (3rd ed., pp. 287–300). New York: Academic Press.Google Scholar
  19. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Le Mens, G., Hannan, M. T., & Pólos, L. (2011). Founding conditions, learning and organizational life chances: Age dependence revisited. Administrative Science Quarterly, 56(1), 95–126.CrossRefGoogle Scholar
  21. Le Mens, G., Hannan, M. T., & Pólos, L. (2015a). Organizational obsolescence, drifting tastes, and age-dependence in organizational life chances. Organization Science, 26(2), 550–570.CrossRefGoogle Scholar
  22. Le Mens, G., Hannan, M. T., & Pólos, L. (2015b). Age-related structural inertia: A distance-based approach. Organization Science, 26(3), 756–773.CrossRefGoogle Scholar
  23. Péli, G. (2009). Fit by founding, fit by adjustment: Reconciling conflicting organization theories with logical formalization. Academy of Management Review, 34(2), 343–360.CrossRefGoogle Scholar
  24. Péli, G., & Bruggeman, J. P. (2007). The cricket and the ant: Organizational trade-offs in changing environments. Journal of Mathematical Sociology, 31(3), 205–235.CrossRefGoogle Scholar
  25. Péli, G., Bruggeman, J. P., Masuch, M., & Ó Nualláin, B. (1994). A logical approach to formalizing organization ecology. American Sociological Review, 59(4), 571–593.CrossRefGoogle Scholar
  26. Péli, G., & Masuch, M. (1997). The logic of propagation strategies: Axiomatizing a fragment of organizational ecology in first-order logic. Organization Science, 8(3), 310–331.CrossRefGoogle Scholar
  27. Péli, G., & Schenk, H. (2015). Organizational decision-maker bias supports merger wave formation: Demonstration with logical formalization. Quality and Quantity. Advance online publication. doi: 10.1007/s11135-014-0122-8 Google Scholar
  28. Pólos, L. (1995). Situated update semantics (CCSOM working paper). Center for Computer Science in Organization & Management, University of Amsterdam. Retrieved from www.cs.indiana.edu/ftp/lsm/polos.tex
  29. Pólos, L., & Hannan, M. T. (2004). A logic for theories in flux: A model theoretic approach. Logique et Analyse, 47(185–188), 85–121.Google Scholar
  30. Pólos, L., Hannan, M. T., & Hsu, G. (2010). Modalities in sociological arguments. Journal of Mathematical Sociology, 34(3), 201–238.CrossRefGoogle Scholar
  31. Prover9, & Mace4 [Computer Software]. (2009). Retrieved from http://www.cs.unm.edu/~mccune/mace4
  32. Schenk, H. (2005). Organisational economics in an age of restructuring, or: How corporate strategies can harm your economy. In P. De Gijsel & H. Schenk (Eds.), Multidisciplinary economics (pp. 333–365). New York: Springer.CrossRefGoogle Scholar
  33. Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.Google Scholar
  34. Thompson, J. D. (1967). Organizations in action: Social science bases of administrative theory. New York: McGraw-Hill.Google Scholar
  35. Veltman, F. (1996). Defaults in update semantics. Journal of Philosophical Logic, 25(3), 221–261.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of EconomicsUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations