A Systematic Approach to Business Modeling Based on the Value Delivery Modeling Language

Part of the FGF Studies in Small Business and Entrepreneurship book series (FGFS)


Complex value creation networks have evolved as a substantial challenge for entrepreneurship in many industries. Value Delivery Architecture Modeling is a new approach to respond to this challenge by enabling people to understand the value creation network and by supporting the successful positioning of a company within this network. Consequently, Value Delivery Architecture Modeling allows for analyzing, evaluating and designing business models and their embeddedness in the value creation network. Value Delivery Architecture Modeling is based on the combination of the new business modeling language Value Delivery Modeling Language and semi-formal ontologies. The initial application of this new approach in the area of fast charging infrastructure in Germany shows promising results. The developed artifacts create an explicit frame of reference for the value creation network which can be useful in various situations. Value Delivery Architecture Modeling hereby addresses the understanding about the value network and enables the creation of novel value propositions.


Business model Electric mobility Ontology Value creation networks VDML 


  1. Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model concept. European Journal of Information Systems, 19(3), 359–376.CrossRefGoogle Scholar
  2. Barriball, K. L., & While, A. (1994). Collecting data using a semi‐structured interview: A discussion paper. Journal of Advanced Nursing, 19(2), 328–335.CrossRefGoogle Scholar
  3. Burnard, P. (1991). A method of analysing interview transcripts in qualitative research. Nurse Education Today, 11(6), 461–466.CrossRefGoogle Scholar
  4. Day, G. S. (1981). Strategic market analysis and definition: An integrated approach. Strategic Management Journal, 2(3), 281–299.CrossRefGoogle Scholar
  5. Diefenbach, T. (2009). Are case studies more than sophisticated storytelling? Methodological problems of qualitative empirical research mainly based on semi-structured interviews. Quality and Quantity, 43(6), 875–894.CrossRefGoogle Scholar
  6. Ehrig, M., & Studer, R. (2006). Wissensvernetzung durch Ontologien. In T. Pellegrini & A. Blumauer (Eds.), SemanticWeb: Wege zur Wissensgesellschaft (pp. 469–484). Berlin: Springer.Google Scholar
  7. Gassmann, O., Frankenberger, K., & Csik, M. (2013). Geschäftsmodelle entwickeln: 55 innovative Konzepte mit dem St. Galler Business Model Navigator. München: Carl Hanser Verlag.CrossRefGoogle Scholar
  8. Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.Google Scholar
  9. Lindgren, P., & Rassmussen, O. (2013). The business model cube. Journal of Multi Business Model Innovation and Technology, 1(3), 135–180.Google Scholar
  10. Mädche, A., Staab, S., & Studer, R. (2001). Ontologien. Wirtschaftsinformatik, 43(4), 393–395.CrossRefGoogle Scholar
  11. Mayring, P., & Brunner, E. (2009). Qualitative Inhaltsanalyse. In R. Buber & H. H. Holzmüller (Eds.), Qualitative Markforschung: Konzepte – Methode – Analysen (pp. 669–680). Wiesbaden, Germany: Gabler.CrossRefGoogle Scholar
  12. Nationale Plattform Elektromobilität. (2014). Fortschrittsbericht 2014 – Bilanz der Marktvorbereitung. Retrieved from
  13. Object Management Group. (2011). OMG Unified Modeling Language (UML) Version 2.4.1. Retrieved from
  14. Object Management Group. (2014). Value Delivery Modeling Language FTF – Beta1. Retrieved from
  15. Object Management Group. (2015). Value Delivery Modeling Language FTF – Beta2. Retrieved from
  16. Osterwalder, A. (2004). The business model ontology: A proposition in a design science approach. Doctoral dissertation, Institut d’Informatique et Organisation, Ecole Des Hautes Etudes Commerciales HEC, University of Lausanne, Lausanne, Switzerland. Retrieved from
  17. Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook for visionaries, game changers, and challengers. Hoboken, NJ: Wiley.Google Scholar
  18. Pathak, S. D., Day, J. M., Nair, A., Sawaya, W. J., & Kristal, M. M. (2007). Complexity and adaptivity in supply networks: Building supply network theory using a complex adaptive systems perspective. Decision Sciences, 38(4), 547–580.CrossRefGoogle Scholar
  19. Reinke, J. (2014). Bereitstellung öffentlicher Ladeinfrastruktur für Elektrofahrzeuge: Eine institutionenökonomische Analyse. Doctoral dissertation. Retrieved from
  20. Song, M., Podoynitsyna, K., van der Bij, H., & Halman, J. I. M. (2008). Success factors in new ventures: A meta‐analysis. Journal of Product Innovation Management, 25(1), 7–27.CrossRefGoogle Scholar
  21. Uschold, M., & Gruninger, M. (1996). Ontologies: Principles, methods and applications. The Knowledge Engineering Review, 11(02), 93–136.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.BMW GroupMunichGermany
  2. 2.Institute for Entrepreneurship, Technology Management and Innovation, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations