A Semantic Foundation for Mixed-Initiative Computational Storytelling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9445)


In mixed-initiative computational storytelling, stories are authored using a given vocabulary that must be understood by both author and computer. In practice, this vocabulary is manually authored ad-hoc, and prone to errors and consistency problems. What is missing is a generic, rich semantic vocabulary that is reusable in different applications and effectively supportive of advanced narrative reasoning and generation. We propose the integration of lexical semantics and commonsense knowledge and we present GluNet, a flexible, open-source, and generic knowledge-base that seamlessly integrates a variety of lexical databases and facilitates commonsense reasoning. Advantages of this approach are illustrated by means of two prototype applications, which make extensive use of the GluNet vocabulary to reason about and manipulate a coauthored narrative. GluNet aims to promote interoperability of narrative generation systems and sharing corpus data between fields of computational narrative.


Computational storytelling Natural language Semantics 



This research has been supported by the Netherlands Organisation for Scientific Research, under project no. 314-99-104.


  1. 1.
    Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: COLING-ACL 1998: Proceedings of the Conference, Montréal, Canada, pp. 86–90 (1998)Google Scholar
  2. 2.
    Carnegie Mellon University Entertainment Technology Center: my StoryMaker (2007)Google Scholar
  3. 3.
    Das, D., Schneider, N., Chen, D., Smith, N.A.: Probabilistic frame-semantic parsing. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT 2010, pp. 948–956. Association for Computational Linguistics, Stroudsburg (2010).
  4. 4.
    Elson, D.K.: Dramabank: annotating agency in narrative discourse. In: Calzolari, N., Choukri, K., Declerck, T., Doğan, M.U., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eight International Conference on Language Resources and Evaluation. European Language Resources Association (ELRA), Istanbul, May 2012Google Scholar
  5. 5.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)MATHGoogle Scholar
  6. 6.
    Finlayson, M.A.: The story workbench: an extensible semi-automatic text annotation tool. In: Intelligent Narrative Technologies IV Workshop, Stanford, California, USA, October 2011.
  7. 7.
    Gurevych, I., Eckle-Kohler, J., Hartmann, S., Matuschek, M., Meyer, C.M., Wirth, C.: UBY - a large-scale unified lexical-semantic resource based on LMF. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2012), pp. 580–590, April 2012Google Scholar
  8. 8.
    Joseph, E.: Bot Colony. North Side Inc., Montreal (2014). Google Scholar
  9. 9.
    Kipper, K., Korhonen, A., Ryant, N., Palmer, M.: A large-scale classification of english verbs. Lang. Resour. Eval. 42(1), 21–40 (2008). CrossRefGoogle Scholar
  10. 10.
    Koenitz, H.: Five theses for interactive digital narrative. In: Mitchell, A., Fernández-Vara, C., Thue, D. (eds.) ICIDS 2014. LNCS, vol. 8832, pp. 134–139. Springer, Heidelberg (2014). Google Scholar
  11. 11.
    Liu, H., Singh, P.: ConceptNet - a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Montfort, N., Pérez, R.P., Harrell, D.F., Campana, A.: Slant: a blackboard system to generate plot, figuration, and narrative discourse aspects of stories. In: Maher, M.L., Veale, T., Saunders, R., Bown, O. (eds.) Proceedings of the Fourth International Conference on Computational Creativity, Sydney, Australia, pp. 168–175, June 2013.
  13. 13.
    Murray, J.H.: Hamlet on the Holodeck: The Future of Narrative in Cyberspace. The Free Press, New York (1997) Google Scholar
  14. 14.
    Nelson, M.J., Mateas, M.: Towards automated game design. In: Basili, R., Pazienza, M.T. (eds.) AI*IA 2007. LNCS (LNAI), vol. 4733, pp. 626–637. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  15. 15.
    Rodosthenous, C.T., Michael, L.: Gathering background knowledge for story understanding through crowdsourcing. In: Finlayson, M.A., Meister, J.C., Bruneau, E.G. (eds.) 2014 Workshop on Computational Models of Narrative, vol. 41, pp. 154–163. OpenAccess Series in Informatics (OASIcs) Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2014).
  16. 16.
    Rodriguez, M.T.L., Colton, S., Hepworth, R., Cook, M., Guckelsberger, C.: Towards the automatic generation of fictional ideas for games. In: AAAI Workshop on Experimental AI in Games (2014)Google Scholar
  17. 17.
    Shi, L., Mihalcea, R.F.: Putting pieces together: combining framenet, verbnet and wordnet for robust semantic parsing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 100–111. Springer, Heidelberg (2005). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Intelligent SystemsDelft University of TechnologyDelftNetherlands

Personalised recommendations