Advertisement

Datasets

  • Juris Klonovs
  • Mohammad A. Haque
  • Volker Krueger
  • Kamal Nasrollahi
  • Karen Andersen-Ranberg
  • Thomas B. Moeslund
  • Erika G. Spaich
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Publicly available datasets constitute the ground to evaluate and compare the performance of proposed approaches for monitoring older patients at home. In this chapter, we shed light on the importance of using datasets as a benchmarking tool for comparing various monitoring techniques for detecting the health threats, which we discussed in the previous chapters. The methods, which are tested by using a standard publicly available dataset as a benchmark, are considered to be more reliable and are more likely to be accepted by the scientific community for their claimed results. Therefore, we summarize the references of available datasets, which are relevant to the field of automatic monitoring of older patients.

Keywords

Patient monitoring dataset Activity recognition dataset Fall detection dataset Wandering detection dataset Audiovisual data Benchmarking 

References

  1. 1.
    Dalton, J., McGrath, M., Pavel, M., Jimison, H.: Home and mobile monitoring systems. CAPSIL, School of Public Health, Physiotherapy, and Population Science, Dublin, Ireland, Deliverable, Roadmap Draft 3.12, May 2009Google Scholar
  2. 2.
    Bharucha, A.J., London, A.J., Barnard, D., Wactlar, H., Dew, M.A., Reynolds 3rd C.F.: Ethical considerations in the conduct of electronic surveillance research. J. Law Med. Ethics J. Am. Soc. Law Med. Ethics, 34(3), 611–619, 482, (2006)Google Scholar
  3. 3.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  4. 4.
    Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition: a review. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 865–878 (2012)CrossRefGoogle Scholar
  5. 5.
    Ahad, M.A.R., Tan, J., Kim, H., Ishikawa, S.: Action dataset – a survey. In 2011 Proceedings of SICE Annual Conference (SICE), Tokyo, Japan, pp. 1650–1655 (2011)Google Scholar
  6. 6.
    Dikmen, O., Mesaros, A.: Sound event detection using non-negative dictionaries learned from annotated overlapping events. In: 2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–4 (2013)Google Scholar
  7. 7.
    Mesaros, A., Heittola, T., Eronen, A., Virtanen, T.: Acoustic event detection in real life recordings. In: 18th European Signal Processing Conference, pp. 1267–1271 (2010)Google Scholar
  8. 8.
    Vuegen, L., Broeck, B.V.D., Karsmakers, P., Hamme, H.V., Vanrumste, B.: Automatic monitoring of activities of daily living based on real-life acoustic sensor data: a~preliminary study. Proc. Fourth Workshop Speech Lang. Process. Assist. Technol. 113–118 (2013)Google Scholar
  9. 9.
    Ni, B., Wang, G., Moulin, P.: RGBD-HuDaAct: a color-depth video database for human daily activity recognition. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1147–1153. Barcelona, ESP (2011)Google Scholar
  10. 10.
    Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., F{ö}rster, K., Tr{ö}ster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., Doppler, J., Holzmann, C., Kurz, M., Holl, G., Chavarriaga, R., Creatura, M., Del,: Collecting complex activity data sets in highly rich networked sensor environments. Presented at the Proceedings of the 7th International Conference on Networked Sensing Systems (INSS), Kassel, Germany (2010)Google Scholar
  11. 11.
    Intille, S.S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) Pervasive Computing, pp. 349–365. Springer, Berlin/Heidelberg (2006)Google Scholar
  12. 12.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive Computing, pp. 158–175. Springer, Berlin/Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Kadouche, R., Pigot, H., Abdulrazak, B., Giroux, S.: User’s behavior classification model for smart houses occupant prediction. In: Chen, L., Nugent, C.D., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments, pp. 149–164. Atlantis Press, Paris (2011)CrossRefGoogle Scholar
  14. 14.
    Reiss, A., Stricker, D.: Creating and benchmarking a new dataset for physical activity monitoring. In: Proceedings of the 5th International Conference on PErvasive Technologies Related to Assistive Environments, pp. 40:1–40:8. Heraklion, GRC (2012)Google Scholar
  15. 15.
    van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: An activity monitoring system for elderly care using generative and discriminative models. Pers. Ubiquit Comput. 14(6), 489–498 (2010)CrossRefGoogle Scholar
  16. 16.
    Yogameena, B., Deepika, G., Mehjabeen, J.: RVM based human fall analysis for video surveillance applications. Res. J. Appl. Sci. Eng. Technol. 4(24), 5361–5366 (2012)Google Scholar
  17. 17.
    Auvinet, E., Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Multiple cameras fall dataset. DIRO-Univ. Montr. Tech Rep 1350 (2010)Google Scholar
  18. 18.
    Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. Inf. Technol. Biomed. IEEE Trans. On 15(2), 290–300 (2011)CrossRefGoogle Scholar
  19. 19.
    Hung, D.H., Saito, H.: The estimation of heights and occupied areas of humans from two orthogonal views for fall detection. 電気学会論文誌 C 電子・情報・システム部門誌 133(1), 117–127 (2013)Google Scholar
  20. 20.
    Hung, D.H., Saito, H.: Fall detection with two cameras based on occupied area. In: Proceedings of 18th Japan-Korea Joint Workshop on Frontier in Computer Vision, pp. 33–39 (2012)Google Scholar
  21. 21.
    Rougier, C., St-Arnaud, A., Rousseau, J., Meunier, J.: Video surveillance for fall detection. INTECH Open Access Publisher (2011)Google Scholar
  22. 22.
    Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 611–622 (2011)CrossRefGoogle Scholar
  23. 23.
    Liu, T., Yao, H., Ji, R., Liu, Y., Liu, X., Sun, X., Xu, P., Zhang, Z.: Vision-based semi-supervised homecare with spatial constraint. In: Advances in Multimedia Information Processing-PCM 2008. pp. 416–425. Springer (2008)Google Scholar
  24. 24.
    Chen, M.-Y., Hauptmann, A., Bharucha, A., Wactlar, H., Yang, Y.: Human activity analysis for geriatric care in nursing homes. In: The Era of Interactive Media, pp. 53–61. Springer, New York (2013)CrossRefGoogle Scholar
  25. 25.
    Zhang, C., Tian, Y., Capezuti, E.: Privacy preserving automatic fall detection for elderly using RGBD cameras. Springer, Berlin (2012)CrossRefGoogle Scholar
  26. 26.
    Anderson, D., Luke, R., Skubic, M., Keller, J.M., Rantz, M., Aud, M.: Evaluation of a video based fall recognition system for elders using voxel space. Gerontechnology 7(2), 68 (2008)CrossRefGoogle Scholar
  27. 27.
    Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Definition and performance evaluation of a robust SVM based fall detection solution. In 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 218–224. Naples, Italy (2012)Google Scholar
  28. 28.
    Rougui, J.E., Istrate, D., Souidene, W.: Audio sound event identification for distress situations and context awareness In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009. pp. 3501–3504. Minneapolis (2009)Google Scholar
  29. 29.
    Montalvao, J., Istrate, D., Boudy, J., Mouba, J.: Sound event detection in remote health care-small learning datasets and over constrained Gaussian mixture models. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 1146–1149. Buenos Aires, Argentina (2010)Google Scholar
  30. 30.
    Bonroy, B., Schiepers, P., Leysens, G., Miljkovic, D., Wils, M., De Maesschalck, L., Quanten, S., Triau, E., Exadaktylos, V., Berckmans, D., and others: Acquiring a dataset of labeled video images showing discomfort in demented elderly. Telemedicine E-Health 15(4), 370–378 (2009)Google Scholar
  31. 31.
    Cheng, H., Liu, Z., Zhao, Y., Ye, G., Sun, X.: Real world activity summary for senior home monitoring. Multimed. Tools Appl. 70(1), 177–197 (2014)CrossRefGoogle Scholar
  32. 32.
    Syngelakis, E., Collomosse, J.: A bag of features approach to ambient fall detection for domestic elder-care (2011)Google Scholar
  33. 33.
    Romdhane, R., Mulin, E., Derreumeaux, A., Zouba, N., Piano, J., Lee, L., Leroi, I., Mallea, P., David, R., Thonnat, M., et al. Automatic video monitoring system for assessment of Alzheimer’s disease symptoms. J. Nutr. Health Aging 16(3), 213–218 (2012)Google Scholar
  34. 34.
    Crispim-Junior, C.F., Bremond, F., Joumier, V.: A multi-sensor approach for activity recognition in older patients. Presented at the Second International Conference on Ambient Computing, Applications, Services and Technologies – AMBIENT 2012 (2012)Google Scholar
  35. 35.
    Zouba, N., Bremond, F., Thonnat, M.: An activity monitoring system for real elderly at home: validation study. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 278–285 (2010)Google Scholar
  36. 36.
    Valentin, N.Z.E.: Multisensor fusion for monitoring elderly activities at home. Université Nice Sophia Antipolis (2010)Google Scholar
  37. 37.
    Baños, O., Damas, M., Pomares, H., Rojas, I., Tóth, M.A., Amft, O.: A benchmark dataset to evaluate sensor displacement in activity recognition. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, New York, pp. 1026–1035 (2012)Google Scholar
  38. 38.
    Banos, O., Toth, M.A., Damas, M., Pomares, H., Rojas, I.: Dealing with the effects of sensor displacement in wearable activity recognition. Sensors 14(6), 9995–10023 (2014)CrossRefGoogle Scholar
  39. 39.
    Kaluža, B., Cvetković, B., Dovgan, E., Gjoreski, H., Gams, M., Luštrek, M., Mirchevska, V.: A multi-agent care system to support independent living. Int. J. Artif. Intell. Tools 23(01), 1440001 (2014)CrossRefGoogle Scholar
  40. 40.
    Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home in a box. Computer 46(7), 62–69 (2013)CrossRefGoogle Scholar
  41. 41.
    Center for Advanced Studies in Adaptive Systems, “Datasets,” WSU CASAS, 2014.Google Scholar
  42. 42.
    Parisa Rashidi: Ambient intelligence datasets. http://www.cise.ufl.edu/~prashidi/Datasets/ambientIntelligence.html (2013). Accessed 18 Sept 2015

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Juris Klonovs
    • 1
  • Mohammad A. Haque
    • 2
  • Volker Krueger
    • 3
  • Kamal Nasrollahi
    • 2
  • Karen Andersen-Ranberg
    • 4
  • Thomas B. Moeslund
    • 5
  • Erika G. Spaich
    • 6
  1. 1.M-TechAalborg UniversityCopenhagenDenmark
  2. 2.Architecture, Design, & Media TechnologyAalborg UniversityAalborgDenmark
  3. 3.Aalborg UniversityCopenhagenDenmark
  4. 4.Danish Aging Research CenterUniversity of Southern DenmarkOdenseDenmark
  5. 5.Visual Analysis of People LabAalborg UniversityAalborgDenmark
  6. 6.Department of Health Science and TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations