Skip to main content

Advanced Characterization Techniques

  • Chapter
  • First Online:
High-Entropy Alloys

Abstract

This chapter first provides a brief introduction to some advanced microstructure characterization tools, such as three-dimensional (3D) atom probe tomography, high-resolution transmission electron microscopy, and neutron scattering. Applications of these techniques to characterize high-entropy alloys (HEAs) are illustrated in model alloys. Utilization of these advanced techniques can provide extremely useful structural and chemical information at the nanoscale. For example, the identification of nano-twins in the fracture-toughness crack region of an HEA may explain the anomalous increases in strength and ductility at cryogenic temperatures. Another striking feature of HEAs is the large local strain among neighboring atoms, which, in general, are arranged in a crystal structure with long-range order. Our understanding of these types of features, and their effect on material properties, will increase as the microstructural characterization techniques described here are further developed and applied to HEA research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. doi:10.1002/adem.200300567

    Article  Google Scholar 

  2. Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A Phys Metall Mater Sci 36A(4):881–893. doi:10.1007/s11661-005-0283-0

    Article  Google Scholar 

  3. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W (2014) High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66(10):1984–1992. doi:10.1007/s11837-014-1085-x

    Article  Google Scholar 

  4. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61 (0):1–93. http://dx.doi.org/10.1016/j.pmatsci.2013.10.001

    Google Scholar 

  5. Tang Z, Gao MC, Diao HY, Yang TF, Liu JP, Zuo TT, Zhang Y, Lu ZP, Cheng YQ, Zhang YW, Dahmen KA, Liaw PK, Egami T (2013) Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems. JOM 65(12):1848–1858. doi:10.1007/s11837-013-0776-z

    Article  Google Scholar 

  6. Zhang Y, Lu ZP, Ma SG, Liaw PK, Tang Z, Cheng YQ, Gao MC (2014) Guidelines in predicting phase formation of high-entropy alloys. MRS Communications 4(02):57–62. doi:10.1557/mrc.2014.11

    Article  Google Scholar 

  7. Wang YP, Li BS, Fu HZ (2009) Solid solution or intermetallics in a high-entropy alloy. Adv Eng Mater 11(8):641–644. doi:10.1002/adem.200900057

    Article  Google Scholar 

  8. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190. doi:10.1016/j.actamat.2010.09.023

    Article  Google Scholar 

  9. Santodonato LJ, Zhang Y, Feygenson M, Parish C, Neuefeind J, Weber RJR, Gao MC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:1–64. doi:10.1038/ncomms6964

    Article  Google Scholar 

  10. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 375:213–218. doi:10.1016/j.mesa.2003.10.257

    Article  Google Scholar 

  11. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158. doi:10.1126/science.1254581

    Article  Google Scholar 

  12. International A (2013) Standard test method for measurement of fracture toughness. ASTM International, West Conshohocken, PA, pp E1820–E1821

    Google Scholar 

  13. Online supplementary materials to ref. 7

    Google Scholar 

  14. Liu Z, Guo S, Liu X, Ye J, Yang Y, Wang X-L, Yang L, An K, Liu CT (2011) Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr Mater 64(9):868–871. doi:10.1016/j.bbr.2011.03.031

    Article  Google Scholar 

  15. Welk BA, Williams REA, Viswanathan GB, Gibson MA, Liaw PK, Fraser HL (2013) Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134:193–199. doi:10.1016/j.ultramic.2013.06.006

    Article  Google Scholar 

  16. Liu J, Cowley JM (1991) Imaging with high-angle scattered electrons and secondary electrons in the STEM. Ultramicroscopy 37(1–4):50–71. http://dx.doi.org/10.1016/0304-3991(91)90006-R

    Google Scholar 

  17. Lucas MS, Wilks GB, Mauger L, Muñoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100 (25):2519071–2519074. http://dx.doi.org/10.1063/1.4730327

    Google Scholar 

  18. Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh JW (2011) Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19(10):1546–1554

    Article  Google Scholar 

  19. Proffen T, Billinge SJL, Egami T, Louca D (2003) Structural analysis of complex materials using the atomic pair distribution function - a practical guide. Zeitschrift Fur Kristallographie 218(2):132–143. doi:10.1524/zkri.218.2.132.20664

    Google Scholar 

  20. Farrow CL, Juhas P, Liu JW, Bryndin D, Bozin ES, Bloch J, Proffen T, Billinge SJL (2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys-Condens Matter 19(33):335219. doi:10.1088/0953-8984/19/33/335219

    Article  Google Scholar 

  21. Peterson PF, Gutmann M, Proffen T, Billinge SJL (2000) J Appl Crystallogr 33:1192

    Article  Google Scholar 

  22. Guo W, Dmowski W, Noh J-Y, Rack P, Liaw P, Egami T (2013) Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall Mater Trans A 44:1994–1997

    Article  Google Scholar 

  23. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2(2):65–71. doi:10.1107/S0021889869006558

    Article  Google Scholar 

  24. Wang XL, Holden TM, Rennich GQ, Stoica AD, Liaw PK, Choo H, Hubbard CR (2006) VULCAN—The engineering diffractometer at the SNS. Phys B: Condens Matter 385–386, Part 1 (0):673–675. http://dx.doi.org/10.1016/j.physb.2006.06.103

  25. Wu Y, Liu WH, Wang XL, Ma D, Stoica AD, Nieh TG, He ZB, Lu ZP (2014) In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl Phys Lett 104(5). http://dx.doi.org/10.1063/1.4863748

    Google Scholar 

  26. An K, Skorpenske H, Stoica A, Ma D, Wang X-L, Cakmak E (2011) First In Situ lattice strains measurements under load at VULCAN. Metall Mater Trans A 42(1):95–99. doi:10.1007/s11661-010-0495-9

    Article  Google Scholar 

  27. Antonaglia J, Xie X, Tang Z, Tsai CW, Qiao JW, Zhang Y, Laktionova MO, Tabachnikova ED, Yeh JW, Senkov ON, Gao MC, Uhl JT, Liaw PK, Dahmen KA (2014) Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66(10):2002–2008. doi:10.1007/s11837-014-1130-9

    Article  Google Scholar 

  28. Shirane G, Shapiro SM, Tranquada JM (2002) Neutron Scattering with a triple-axis spectrometer. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports by Department of Energy (DOE) Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP, grant #00119262), the DOE Office of Fossil Energy, NETL (DE-FE0008855 and DE-FE-0011194), and the US Army Office Project (W911NF-13-1-0438).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Liaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santodonato, L.J., Liaw, P.K. (2016). Advanced Characterization Techniques. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_4

Download citation

Publish with us

Policies and ethics