Abstract
This chapter first provides a brief introduction to some advanced microstructure characterization tools, such as three-dimensional (3D) atom probe tomography, high-resolution transmission electron microscopy, and neutron scattering. Applications of these techniques to characterize high-entropy alloys (HEAs) are illustrated in model alloys. Utilization of these advanced techniques can provide extremely useful structural and chemical information at the nanoscale. For example, the identification of nano-twins in the fracture-toughness crack region of an HEA may explain the anomalous increases in strength and ductility at cryogenic temperatures. Another striking feature of HEAs is the large local strain among neighboring atoms, which, in general, are arranged in a crystal structure with long-range order. Our understanding of these types of features, and their effect on material properties, will increase as the microstructural characterization techniques described here are further developed and applied to HEA research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303. doi:10.1002/adem.200300567
Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A Phys Metall Mater Sci 36A(4):881–893. doi:10.1007/s11661-005-0283-0
Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W (2014) High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66(10):1984–1992. doi:10.1007/s11837-014-1085-x
Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61 (0):1–93. http://dx.doi.org/10.1016/j.pmatsci.2013.10.001
Tang Z, Gao MC, Diao HY, Yang TF, Liu JP, Zuo TT, Zhang Y, Lu ZP, Cheng YQ, Zhang YW, Dahmen KA, Liaw PK, Egami T (2013) Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloy systems. JOM 65(12):1848–1858. doi:10.1007/s11837-013-0776-z
Zhang Y, Lu ZP, Ma SG, Liaw PK, Tang Z, Cheng YQ, Gao MC (2014) Guidelines in predicting phase formation of high-entropy alloys. MRS Communications 4(02):57–62. doi:10.1557/mrc.2014.11
Wang YP, Li BS, Fu HZ (2009) Solid solution or intermetallics in a high-entropy alloy. Adv Eng Mater 11(8):641–644. doi:10.1002/adem.200900057
Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59(1):182–190. doi:10.1016/j.actamat.2010.09.023
Santodonato LJ, Zhang Y, Feygenson M, Parish C, Neuefeind J, Weber RJR, Gao MC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:1–64. doi:10.1038/ncomms6964
Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A Struct Mater Prop Microstruct Process 375:213–218. doi:10.1016/j.mesa.2003.10.257
Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158. doi:10.1126/science.1254581
International A (2013) Standard test method for measurement of fracture toughness. ASTM International, West Conshohocken, PA, pp E1820–E1821
Online supplementary materials to ref. 7
Liu Z, Guo S, Liu X, Ye J, Yang Y, Wang X-L, Yang L, An K, Liu CT (2011) Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr Mater 64(9):868–871. doi:10.1016/j.bbr.2011.03.031
Welk BA, Williams REA, Viswanathan GB, Gibson MA, Liaw PK, Fraser HL (2013) Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134:193–199. doi:10.1016/j.ultramic.2013.06.006
Liu J, Cowley JM (1991) Imaging with high-angle scattered electrons and secondary electrons in the STEM. Ultramicroscopy 37(1–4):50–71. http://dx.doi.org/10.1016/0304-3991(91)90006-R
Lucas MS, Wilks GB, Mauger L, Muñoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100 (25):2519071–2519074. http://dx.doi.org/10.1063/1.4730327
Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh JW (2011) Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter. Intermetallics 19(10):1546–1554
Proffen T, Billinge SJL, Egami T, Louca D (2003) Structural analysis of complex materials using the atomic pair distribution function - a practical guide. Zeitschrift Fur Kristallographie 218(2):132–143. doi:10.1524/zkri.218.2.132.20664
Farrow CL, Juhas P, Liu JW, Bryndin D, Bozin ES, Bloch J, Proffen T, Billinge SJL (2007) PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys-Condens Matter 19(33):335219. doi:10.1088/0953-8984/19/33/335219
Peterson PF, Gutmann M, Proffen T, Billinge SJL (2000) J Appl Crystallogr 33:1192
Guo W, Dmowski W, Noh J-Y, Rack P, Liaw P, Egami T (2013) Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study. Metall Mater Trans A 44:1994–1997
Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2(2):65–71. doi:10.1107/S0021889869006558
Wang XL, Holden TM, Rennich GQ, Stoica AD, Liaw PK, Choo H, Hubbard CR (2006) VULCAN—The engineering diffractometer at the SNS. Phys B: Condens Matter 385–386, Part 1 (0):673–675. http://dx.doi.org/10.1016/j.physb.2006.06.103
Wu Y, Liu WH, Wang XL, Ma D, Stoica AD, Nieh TG, He ZB, Lu ZP (2014) In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl Phys Lett 104(5). http://dx.doi.org/10.1063/1.4863748
An K, Skorpenske H, Stoica A, Ma D, Wang X-L, Cakmak E (2011) First In Situ lattice strains measurements under load at VULCAN. Metall Mater Trans A 42(1):95–99. doi:10.1007/s11661-010-0495-9
Antonaglia J, Xie X, Tang Z, Tsai CW, Qiao JW, Zhang Y, Laktionova MO, Tabachnikova ED, Yeh JW, Senkov ON, Gao MC, Uhl JT, Liaw PK, Dahmen KA (2014) Temperature effects on deformation and serration behavior of high-entropy alloys (HEAs). JOM 66(10):2002–2008. doi:10.1007/s11837-014-1130-9
Shirane G, Shapiro SM, Tranquada JM (2002) Neutron Scattering with a triple-axis spectrometer. Cambridge University Press, Cambridge, UK
Acknowledgments
The authors acknowledge the financial supports by Department of Energy (DOE) Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP, grant #00119262), the DOE Office of Fossil Energy, NETL (DE-FE0008855 and DE-FE-0011194), and the US Army Office Project (W911NF-13-1-0438).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Santodonato, L.J., Liaw, P.K. (2016). Advanced Characterization Techniques. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-27013-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27011-1
Online ISBN: 978-3-319-27013-5
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)