Skip to main content

CALPHAD Modeling of High-Entropy Alloys

  • Chapter
  • First Online:
Book cover High-Entropy Alloys

Abstract

Phase diagrams are the key to understanding of high-entropy alloy formation. This chapter first presents the basics of CALPHAD (acronym of Calculation of Phase Diagrams) methodology and then details the procedures used in developing self-consistent thermodynamic databases tailored for HEA systems. A self-consistent thermodynamic database (PanHEA) has been developed for the Al-Co-Cr-Fe-Ni system that covers the complete compositional ranges for all its constituent binaries and ternaries, and it will be useful for future HEA design and processing optimization. HEA formation from the thermodynamic point of view is then illustrated for three HEA systems using TCNI7 database: FCC-forming Co-Cr-Fe-Mn-Ni, FCC- and BCC-forming Al-Co-Cr-Fe-Ni, and BCC-forming Mo-Nb-Ta-Ti-V-W systems. The FCC system shows large positive excess entropy while the BCC system shows small negative excess entropy, and these results are consistent with their vibrational entropies of mixing predicted from first-principle calculations presented in Chap. 10 “Applications of Special Quasi-random Structures to High-Entropy Alloys.” Addition of Al to CoCrFeNi stabilizes the BCC phase via the dominating enthalpy effect. The present study demonstrates that configurational entropy does not always dominate, and enthalpy and competing phases need to be considered in terms of phase stability. Applications of CALPHAD to high-entropy alloy design and microstructure development are then presented for the case of several alloys and satisfactory agreement between modeling calculations and experimental results is observed. Various isotherms and isopleths of the Al-Co-Cr-Fe-Ni system are predicted. Future perspectives on CALPHAD development including short-range ordering and kinetic database development pertaining to HEAs conclude this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh JW, Chen YL, Lin SJ, Chen SK (2007) High-entropy alloys – a new era of exploitation. Mater Sci Forum 560:1–9. doi:10.4028/www.scientific.net/MSF.560.1

    Google Scholar 

  2. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93. doi:10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  3. Gao MC, Alman DE (2013) Searching for next single-phase high-entropy alloy compositions. Entropy 15:4504–4519. doi:10.3390/e15104504

    Article  Google Scholar 

  4. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. doi:10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  5. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61:2628–2638. doi:10.1016/j.actamat.2013.01.042

    Article  Google Scholar 

  6. Ohtania H, Ishida K (1998) Application of the CALPHAD method to material design. Thermochimica Acta 314:69–77. doi:10.1016/S0040-6031(97)00457-7

    Article  Google Scholar 

  7. Chang YA, Chen SL, Zhang F, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2004) Phase diagram calculation: past, present and future. Prog Mater Sci 49:313–345. doi:10.1016/S0079-6425(03)00025-2

    Article  Google Scholar 

  8. Olson GB, Kuehmann CJ (2014) Materials genomics: from CALPHAD to flight. Scr Mater 70:25–30. doi:10.1016/j.scriptamat.2013.08.032

    Article  Google Scholar 

  9. Zhang C, Zhang F, Chen S, Cao W (2012) Computational thermodynamics aided high-entropy alloy design. JOM 64(7):839–845. doi:10.1007/s11837-012-0365-6

    Article  Google Scholar 

  10. Zhang F, Zhang C, Chen S, Zhu J, Cao W, Kattner UR (2014) An understanding of high entropy alloys from phase diagram calculations. Calphad 45:1–10. doi:10.1016/j.calphad.2013.10.006

    Article  Google Scholar 

  11. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic, New York

    Google Scholar 

  12. Hillert M (1968) Phase transformations. ASM, Cleveland

    Google Scholar 

  13. PandatTM Thermodynamic Calculations and Kinetic Simulations. CompuTherm LLC, Madison, WI, USA – 53719

    Google Scholar 

  14. Thermo-Calc thermodynamic equilibrium calculations. Thermo-Calc Software, Stockholm, Sweden

    Google Scholar 

  15. FactSage Thermochemical Software. Montreal, Canada

    Google Scholar 

  16. Chou KC, Chang YA (1989) A study of ternary geometrical models. Berichte der Bunsengesellschaft für physikalische Chemie 93(6):735–741. doi:10.1002/bbpc.19890930615

    Article  Google Scholar 

  17. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15(4):317–425. doi:10.1016/0364-5916(91)90030-N

    Article  Google Scholar 

  18. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348. doi:10.1021/ie50458a036

    Article  Google Scholar 

  19. Ansara I (1979) Comparison of methods for thermodynamic calculation of phase diagrams. Int Met Rev 24(1):20–53. doi:http://dx.doi.org/10.1179/imtr.1979.24.1.20

    Google Scholar 

  20. Anderson JO, Guillermet AF, Hillert M, Jason B, Sundman B (1986) A compound-energy model of ordering in a phase with sites of different coordination numbers. Acta Metall 34(3):437–445. doi:10.1016/0001-6160(86)90079-9

    Article  Google Scholar 

  21. Oates WA, Wenzl H (1992) The bond energy model for ordering in a phase with sites of different coordination numbers. Calphad 16(1):73–78. doi:10.1016/0364-5916(92)90040-5

    Article  Google Scholar 

  22. Chen SL, Kao CR, Chang YA (1995) A generalized quasi-chemical model for ordered multi-component, multi-sublattice intermetallic compounds with anti-structure defects. Intermetallics 3(3):233–242. doi:10.1016/0966-9795(95)98934-z

    Article  Google Scholar 

  23. Gao MC, Unlu N, Shiflet GJ, Mihalkovic M, Widom M (2005) Reassessment of Al-Ce and Al-Nd binary systems supported by critical experiments and first-principles energy calculations. Metall Mater Trans A Phys Metall Mater Sci 36A(12):3269–3279. doi:10.1007/s11661-005-0001-y

    Article  Google Scholar 

  24. Gao MC, Rollett AD, Widom M (2006) First-principles calculation of lattice stability of C15-M2R and their hypothetical C15 variants (M = Al, Co, Ni; R = Ca, Ce, Nd, Y). Calphad Comput Coupling Phase Diagrams Thermochem 30(3):341–348. doi:10.1016/j.calphad.2005.12.005

    Article  Google Scholar 

  25. Gao MC, Rollett AD, Widom M (2007) The lattice stability of aluminum-rare earth binary systems: a first principles approach. Phys Rev B 75:174120. doi:http://dx.doi.org/10.1103/PhysRevB.75.174120

  26. Mihalkovic M, Widom M (2004) Ab initio calculations of cohesive energies of Fe-based glass-forming alloys. Phys Rev B 70(14):144107. doi:10.1103/PhysRevB.70.144107

  27. Gao MC, Suzuki Y, Schweiger H, Dogan ON, Hawk J, Widom M (2013) Phase stability and elastic properties of Cr-V alloys. J Phys Condensed Matter 25(7):075402. doi:10.1088/0953-8984/25/7/075402

    Google Scholar 

  28. Kumar KCH, Wollants P (2001) Some guidelines for thermodynamic optimisation of phase diagrams. J Alloys Compd 320(2):189–198. doi:10.1016/S0925-8388(00)01491-2

    Article  Google Scholar 

  29. Ishida K, Nishizawa T (1990) Co-Cr phase diagram, vol 3, Alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  30. Zhang B, Zhang Y, Gao MC, Yang S, Guo SM (2015) Senary refractory high-entropy alloy MoNbTaTiVW. Mat Sci Tech 31(10):1207–1213. doi:10.1179/1743284715Y.0000000031

    Google Scholar 

  31. Widom M (2015) Prediction of structure and phase transformations. In: Gao MC, Yeh JW, Liaw PK, Zhang Y (eds) High entropy alloys: fundamentals and applications. Springer, Cham

    Google Scholar 

  32. Kattner UR (1997) The thermodynamic modeling of multicomponent phase equilibria. JOM 49(12):14–19. doi:10.1007/s11837-997-0024-5

    Article  Google Scholar 

  33. Schmid-Fetzer R, Grobner J (2001) Focused development of magnesium alloys using the calphad approach. Adv Eng Mater 3(12):947–961. doi:10.1002/1527-2648(200112)3:12<947::AID-ADEM947>3.0.CO;2-P

    Article  Google Scholar 

  34. Saunders N, Fahrmann M, Small CJ (2000) The application of CALPHAD to Ni-based superalloys. Superalloys. TMS (The Minerals, Metals & Materials Society). In “Superalloys 2000” eds. K. A. Green, T. M. Pollock and R. D. Kissinger (TMS, Warrendale, 2000), 803–811

    Google Scholar 

  35. Chang YA (2006) Phase diagram calculations in teaching, research, and industry. Metall Mater Trans A 37(2):273–305. doi:10.1007/s11661-006-0001-6

    Article  Google Scholar 

  36. Hsieh KC, Yu CF, Hsieh WT, Chiang WR, Ku JS, Lai JH, Tu CP, Yang CC (2009) The microstructure and phase equilibrium of new high performance high-entropy alloys. J Alloys Compd 483(1–2):209–212. doi:10.1016/j.jallcom.2008.08.118

    Article  Google Scholar 

  37. Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16(1):494–525. doi:10.3390/e16010494

    Article  Google Scholar 

  38. Senkov ON, Zhang F, Miller JD (2013) Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: comparison of experimental and simulated data. Entropy 15(9):3796–3809. doi:10.3390/e15093796

    Article  Google Scholar 

  39. Kao YF, Chen TJ, Chen SK, Yeh JW (2009) Microstructure and mechanical property of as-cast, −homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J Alloys Compd 488:57–64. doi:10.1016/j.jallcom.2009.08.090

    Article  Google Scholar 

  40. Kao YF, Chen SK, Chen TJ, Chu PC, Yeh JW, Lin SJ (2011) Electrical, magnetic, and hall properties of AlxCoCrFeNi high-entropy alloys. J Alloys Compd 509(5):1607–1614. doi:10.1016/j.jallcom.2010.10.210

    Article  Google Scholar 

  41. Lin CM, Tsai HL (2011) Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics 19(3):288–294. doi:10.1016/j.intermet.2010.10.008

    Article  Google Scholar 

  42. Wang WR, Wang WL, Yeh JW (2014) Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd 589:143–152. doi:10.1016/j.jallcom.2013.11.084

    Article  Google Scholar 

  43. Li C, Li JC, Zhao M, Jiang Q (2010) Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J Alloys Compd 504:S515–S518. doi:10.1016/j.jallcom.2010.03.111

    Article  Google Scholar 

  44. Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51. doi:10.1016/j.intermet.2012.03.005

    Article  Google Scholar 

  45. Li C, Zhao M, Li JC, Jiang Q (2008) B2 structure of high-entropy alloys with addition of Al. J Appl Phys 104:113504–113506. doi:http://dx.doi.org/10.1063/1.3032900

    Google Scholar 

  46. Shun TT, Du YC (2009) Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy. J Alloys Compd 479(1–2):157–160. doi:10.1016/j.jallcom.2008.12.088

    Article  Google Scholar 

  47. Chou HP, Chang YS, Chen SK, Yeh JW (2009) Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. Mater Sci Eng B 163(3):184–189. doi:10.1016/j.mseb.2009.05.024

    Article  Google Scholar 

  48. Vitek JM, David SA (1986) The sigma phase transformation in austenitic stainless steels. Weld Res Suppl 65:106–111

    Google Scholar 

  49. Liu S, Gao MC, Liaw PK, Zhang Y (2015) Microstructures and mechanical properties of AlxCrFeNiTi0.25 alloys. J Alloys Compd 619:610–615. doi:http://dx.doi.org/10.1016/j.jallcom.2014.09.073

    Google Scholar 

  50. Tang Z, Gao MC, Diao HY, Yang T, Liu J, Zuo T, Zhang Y, Lu Z, Cheng Y, Zhang Y, Dahmen KA, Liaw PK, Egami T (2013) Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65(12):1848–1858. doi:10.1007/s11837-013-0776-z

    Article  Google Scholar 

  51. Tung CT, Yeh JW, Shun TT, Chen SK, Huang YS, Cheng HC (2007) On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett 61(1):1–5. doi:10.1016/j.matlet.2006.03.140

    Article  Google Scholar 

  52. Scheil E (1942) Z Metallkd 34:70–72

    Google Scholar 

  53. Gulliver GH (1913) The quantitative effect of rapid cooling upon the constitution of binary alloys. J Ins Met 9:120–157

    Google Scholar 

  54. Guo S, Ng C, Liu CT (2013) Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd 557:77–81. doi:10.1016/j.jallcom.2013.01.007

    Article  Google Scholar 

  55. Liu Y, Ma SG, Gao MC, Zhang C, Zhang T, Yang H, Wang ZH, Qiao JW (2016) Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metallurgical and Materials Transactions A (in press). doi:10.1007/s11661-016-3396-8

    Google Scholar 

  56. Ghosh G, Asta M (2005) First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics. Acta Mater 53(11):3225–3252. doi:10.1016/j.actamat.2005.03.028

    Article  Google Scholar 

  57. Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJK, Neuefeind JC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964. doi:10.1038/ncomms6964

  58. Cahn RW (1991) Mechanisms and kinetics in ordering and disordering. In: Yavari AR (ed) Odering and disordering in alloys. Elsevier Science Publishers LTD, Grenoble, pp 3–12

    Google Scholar 

  59. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics – the Calphad method. Cambridge University Press, New York, doi:www.cambridge.org/9780521868112

    Book  Google Scholar 

  60. Greven A, Keller G, Warnercke G (2003) Entropy, Princeton series in applied mathematics. Princeton University Press, Princeton

    Book  Google Scholar 

  61. Grosky W (1928) X-ray analysis of transformations in the alloy Cu Au. Zeitschrift für Physik 50(1–2):64–81. doi:10.1007/BF01328593

    Article  Google Scholar 

  62. Shockley W (1938) Theory of order for the copper gold alloy system. J Chem Phys 6(3):130–144. doi:10.1063/1.1750214

    Article  Google Scholar 

  63. deFontaine D, Kikuchi R (1978) Fundamental calculations of phase diagrams using the cluster variation method, vol 2, Applications of phase diagrams in metallurgy and ceramics. NBS, National Bureau of Standards, Gaithersburg

    Google Scholar 

  64. Ackermann H, Crusius S, Inden G (1986) On the ordering of face-centered-cubic alloys with nearest neighbour interactions. Acta Metall 34(12):2311–2321. doi:10.1016/0001-6160(86)90134-3

    Article  Google Scholar 

  65. Sundman B, Fries SG, Oates WA (1998) A thermodynamic assessment of the Au-Cu system. Calphad 22(3):335–354. doi:10.1016/S0364-5916(98)00034-0

    Article  Google Scholar 

  66. Abe T, Sundman B (2003) A description of the effect of short range ordering in the compound energy formalism. Calphad 27(4):403–408. doi:10.1016/j.calphad.2004.01.005

    Article  Google Scholar 

  67. Fowler RH (1938) Statistical mechanics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  68. Oates WA, Wenzl H (1996) The cluster/site approximation for multicomponent solutions – a practical alternative to the cluster variation method. Scr Mater 35(5):623–627. doi:10.1016/1359-6462(96)00198-4

    Article  Google Scholar 

  69. Cao W, Zhu J, Yang Y, Zhang F, Chen S, Oates WA, Chang YA (2005) Application of the cluster/site approximation to fcc phases in Ni–Al–Cr system. Acta Mater 53(15):4189–4197. doi:10.1016/j.actamat.2005.05.016

    Article  Google Scholar 

  70. Zhang C, Zhu J, Bengtson A, Morgan D, Zhang F, Cao W-S, Chang YA (2008) Modeling of phase stability of the fcc phases in the Ni–Ir–Al system using the cluster/site approximation method coupling with first-principles calculations. Acta Mater 56(11):2576–2584. doi:10.1016/j.actamat.2008.01.056

    Article  Google Scholar 

  71. Zhang C, Zhu J, Bengtson A, Morgan D, Zhang F, Yang Y, Chang YA (2008) Thermodynamic modeling of the Cr–Pt binary system using the cluster/site approximation coupling with first-principles energetics calculation. Acta Mater 56(19):5796–5803. doi:10.1016/j.actamat.2008.07.057

    Article  Google Scholar 

  72. Zhang F, Chang YA, Du Y, Chen S-L, Oates WA (2003) Application of the cluster-site approximation (CSA) model to the f.c.c. phase in the Ni–Al system. Acta Mater 51(1):207–216. doi:10.1016/S1359-6454(02)00392-0

    Article  Google Scholar 

  73. Campbell CE, Boettinger WJ, Kattner UR (2002) Development of a diffusion mobility database for Ni-base superalloys. Acta Mater 50(4):775–792. doi:10.1016/S1359-6454(01)00383-4

    Article  Google Scholar 

  74. Tsai K-Y, Tsai M-H, Yeh J-W (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61(13):4887–4897. doi:10.1016/j.actamat.2013.04.058

    Article  Google Scholar 

Download references

Acknowledgments

M.C.G. acknowledges the financial support by the Crosscutting Technology Research Program at the National Energy Technology Laboratory (NETL) – Strategic Center for Coal – managed by Robert Romanosky (Technology Manager) and Charles Miller (Technology Monitor). The research was executed through NETL’s Office of Research and Development’s Innovative Process Technologies (IPT) Field Work Proposal under the RES contract DE-FE-0004000. The authors thank Prof. P.K. Liaw’s group for providing experimental support. C.Z. thanks Fan Zhang and Shuanglin Chen for inspiring discussions on CALPHAD modeling. M.C.G. thanks Mike Widom, Jeffrey A. Hawk, David E. Alman, and Bryan Morreale for their general discussion on HEAs.

Disclaimer

This chapter co-authored by M.C.G. was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with AECOM. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, C., Gao, M.C. (2016). CALPHAD Modeling of High-Entropy Alloys. In: Gao, M., Yeh, JW., Liaw, P., Zhang, Y. (eds) High-Entropy Alloys. Springer, Cham. https://doi.org/10.1007/978-3-319-27013-5_12

Download citation

Publish with us

Policies and ethics