• Ionela ProdanEmail author
  • Florin Stoican
  • Sorin Olaru
  • Silviu-Iulian Niculescu
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


The work summarized in this book develops and brings to light new insights in the use of mixed-integer formulations to efficiently describe non-convex and non-connected regions appearing in a wide range of applications in control theory.


  1. 1.
    Prodan, I., Zio, E.: A model predictive control for reliable microgrid energy management. Int. J. Electr. Power Energy Syst. 61, 399–409 (2014)Google Scholar
  2. 2.
    Prodan, I., Zio, E., Stoican, F.: Fault tolerant predictive control design for reliable microgrid energy management under uncertainties. Energy, 91, 20–34. Elsevier (2015)Google Scholar
  3. 3.
    Jiang, R., Wang, J., Guan, Y.: Robust unit commitment with wind power and pumped storage hydro. IEEE Trans. Power Syst. 27(2), 800–810 (2012)CrossRefGoogle Scholar
  4. 4.
    Arroyo, J., Conejo, A.: A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Trans. Power Syst. 17(4), 1216–1224 (2002)CrossRefGoogle Scholar
  5. 5.
    Alguacil, N., Motto, A., Conejo, A.: Transmission expansion planning: a mixed-integer LP approach. IEEE Trans. Power Syst. 18(3), 1070–1077 (2003)CrossRefGoogle Scholar
  6. 6.
    Conejo, A., Arroyo, J.M., Contreras, J., Villamor, F.: Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Trans. Power Syst. 17(4), 1265–1272 (2002)CrossRefGoogle Scholar
  7. 7.
    Sivanthi, T., Poland, J.: Efficient planning of substation automation system cables. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp. 210–214. Springer (2011)Google Scholar
  8. 8.
    Sung, C., Maravelias, C.: An attainable region approach for production planning of multiproduct processes. AIChE J. 53(5), 1298–1315 (2007)CrossRefGoogle Scholar
  9. 9.
    Ruiz, J., Grossmann, I.: Using redundancy to strengthen the relaxation for the global optimization of MINLP problems. Comput. Chem. Eng. 35(12), 2729–2740 (2011)CrossRefGoogle Scholar
  10. 10.
    Mitra, S., Grossmann, I.E., Pinto, J.M., Arora, N.: Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes. Comput. Chem. Eng. 38, 171–184 (2012)CrossRefGoogle Scholar
  11. 11.
    Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1–2), 31–56 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Margellos, K., Goulart, P., Lygeros, J.: On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59(8), 2258–2263 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ionela Prodan
    • 1
    Email author
  • Florin Stoican
    • 2
  • Sorin Olaru
    • 3
  • Silviu-Iulian Niculescu
    • 4
  1. 1.Laboratory of Conception and Integration of SystemsUniversité Grenoble AlpesValenceFrance
  2. 2.Department of Automatic Control and Systems EngineeringPolitehnica University of BucharestBucharestRomania
  3. 3.Laboratory of Signals and SystemsCentraleSupélec - CNRS - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  4. 4.Laboratory of Signals and SystemsCNRS - CentraleSupélec - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations