Advertisement

Control Problems Involving Mixed-Integer Decision Making

  • Ionela ProdanEmail author
  • Florin Stoican
  • Sorin Olaru
  • Silviu-Iulian Niculescu
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter validates the results presented in the previous chapters over two well-known and still largely open classes of control problems.

References

  1. 1.
    Wooldridge, M., Müller, J., Tambe, M.: Intelligent Agents II-Agent Theories, Architectures, and Languages, vol. 1037. Springer (1997)Google Scholar
  2. 2.
    Olfati-Saber, R., Murray, R.: Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 15th IFAC World Congress, pp. 346–352. Barcelona, Spain (2002)Google Scholar
  3. 3.
    Rimon, E., Koditschek, D.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot. Autom. 8(5), 501–518 (1992)CrossRefGoogle Scholar
  4. 4.
    Richards, A., How, J.: Model predictive control of vehicle maneuvers with guaranteed completion time and robust feasibility. In: Proceedings of the 24th American Control Conference, vol. 5, pp. 4034–4040. Portland, Oregon, USA (2005)Google Scholar
  5. 5.
    Richards, A., How, J.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: IEEE (IEEE (ed.): Proceedings of the 21th American Control Conference. Anchorage, Alaska, USA (2002)), pp. 1936–1941Google Scholar
  6. 6.
    Shamma, J.: Cooperative Control of Distributed Multi-agent Systems. Wiley Online Library (2007)Google Scholar
  7. 7.
    Grundel, D., Murphey, R., Pardalos, P.: Cooperative Systems, Control and Optimization, vol. 588. Springer (2007)Google Scholar
  8. 8.
    Richalet, J., O’Donovan, D.: Predictive Functional Control: Principles and Industrial Applications. Springer (2009)Google Scholar
  9. 9.
    Rawlings, J., Mayne, D.: Postface to Model Predictive Control: Theory and Design (2011)Google Scholar
  10. 10.
    Camacho, E., Bordons, C.: Model Predictive Control. Springer (2004)Google Scholar
  11. 11.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar
  12. 12.
    Seron, M., Zhuo, X.W., De Doná, J., Martínez, J.: Multisensor switching control strategy with fault tolerance guarantees. Automatica 44(1), 88–97 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Olaru, S., De Doná, J., Seron, M., Stoican, F.: Positive invariant sets for fault tolerant multisensor control schemes. Int. J. Control 83(12), 2622–2640 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stoican, F., Olaru, S., Seron, M., De Doná, J.: Reference governor design for tracking problems with fault detection guarantees. J. Process Control 22(5), 829–836 (2012)Google Scholar
  15. 15.
    Prodan, I., Stoican, F., Olaru, S., Stoica, C., Niculescu, S.I.: Mixed-integer programming techniques in distributed MPC problems. In: Distributed MPC Made Easy, vol. 69, pp. 273–288. Springer (2013)Google Scholar
  16. 16.
    Prodan, I., Olaru, S., Stoica, C., Niculescu, S.I.: On the tight formation for multi-agent dynamical systems. In: KES—Agents and Multi-agent Systems—Technologies and Applications, pp. 554–565. Springer (2012)Google Scholar
  17. 17.
    Prodan, I.: Control of multi-agent dynamical systems in the presence of constraints. Ph.D. thesis, Supélec (2012), https://tel.archives-ouvertes.fr/tel-00783221/document
  18. 18.
    Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Anal.: Hybrid Syst. 4(2), 233–249 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Grancharova, A., Grøtli, E.I., Ho, D.T., Johansen, T.A.: UAVs trajectory planning by distributed MPC under radio communication path loss constraints. J. Intell. Robot. Syst., pp. 1–20. Springer (2014)Google Scholar
  20. 20.
    Prodan, I., Bitsoris, G., Olaru, S., Stoica, C., Niculescu, S.: On the limit behavior for multi-agent dynamical systems. In: The IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, pp. 106–111. Porto, Portugal (2012)Google Scholar
  21. 21.
    Stoican, F., Prodan, I., Olaru, S.: Hyperplane arrangements in mixed-integer programming techniques. Collision avoidance application with zonotopic sets. In: Proceedings of the IEEE European Control Conference, pp. 3155–3160 (2013)Google Scholar
  22. 22.
    Strutu, M.I., Stoican, T., Prodan, I., Popescu, D., Olaru, S.: A characterization of the relative positioning of mobile agents for full sensorial coverage in an augmented space with obstacles. In: Proceedings of the 21st Mediterranean Conference on Control and Automation, pp. 936–941. Platania-Chania, Crete, Grecee (2013)Google Scholar
  23. 23.
    Stoican, F., Grotli, E., Prodan, I., Oara, C.: On corner cutting in multi-obstacle avoidance problems. In: 5th IFAC Conference on Nonlinear Model Predictive Control, pp. 185–190. Seville, Spain (2015)Google Scholar
  24. 24.
    Murphy, R.R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.M.: Search and rescue robotics. In: Springer Handbook of Robotics, pp. 1151–1173. Springer (2008)Google Scholar
  25. 25.
    Castillo-Rogez, J., Pavone, M., Nesnas, I., Hoffman, J.: Expected science return of spatially-extended in-situ exploration at small solar system bodies. In: IEEE Aerospace Conference, pp. 1–15 (2012)Google Scholar
  26. 26.
    Hubbell, N., Han, Q.: Dragon: detection and tracking of dynamic amorphous events in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(7), 1193–1204 (2012)CrossRefGoogle Scholar
  27. 27.
    Murray, R.M.: Recent research in cooperative control of multivehicle systems. Trans.-Am. Soc. Mech. Eng. J. Dyn. Syst. Meas. Control 129(5), 571 (2007)CrossRefGoogle Scholar
  28. 28.
    Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57(2), 121–152 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Richards, A., Turnbull, O.: Inter-sample avoidance in trajectory optimizers using mixed-integer linear programming. Int. J. Robust Nonlinear Control 25, 521–526 (2015)Google Scholar
  31. 31.
    Maia, M.H., Galvão, R.K.H.: On the use of mixed-integer linear programming for predictive control with avoidance constraints. Int. J. Robust Nonlinear Control 19, 822–828 (2009)Google Scholar
  32. 32.
    Deits, R., Tedrake, R.: Efficient mixed-integer planning for UAVs in cluttered environments. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1–8 (2015)Google Scholar
  33. 33.
    Maciejowski, J., Jones, C.: MPC fault-tolerant flight control case study: flight 1862. In: Proceedings of the 4th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 121–126. Washington, DC, USA, (2003)Google Scholar
  34. 34.
    Prodan, I., Olaru, S., Stoica, S., Niculescu, S.I.: Predictive control for trajectory tracking and decentralized navigation of multi-agent formations. Int. J. Appl. Math. Comput. Sci. 23(1), 91–102 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple UAVs. In: AIAA Guidance, Navigation, and Control Conference Monterey, pp. 1–11. CA (2002)Google Scholar
  36. 36.
    Earl, M., D’Andrea, R.: Modeling and control of a multi-agent system using mixed integer linear programming. In: Proceedings of the 40th IEEE Conference on Decision and Control, vol. 1, pp. 107–111. Orlando, Florida, USA (2001)Google Scholar
  37. 37.
    Fowler, J., D’Andrea, R.: Distributed control of close formation flight. In: In the Proceedings of the 41st IEEE Conference on Decision and Control, vol. 3, pp. 2972–2977. IEEE (2002)Google Scholar
  38. 38.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press (2010)Google Scholar
  39. 39.
    Grundel, D., Pardalos, P.: Theory and Algorithms for Cooperative Systems, vol. 4. World Scientific Publishing Co Inc. (2004)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ionela Prodan
    • 1
    Email author
  • Florin Stoican
    • 2
  • Sorin Olaru
    • 3
  • Silviu-Iulian Niculescu
    • 4
  1. 1.Laboratory of Conception and Integration of SystemsUniversité Grenoble AlpesValenceFrance
  2. 2.Department of Automatic Control and Systems EngineeringPolitehnica University of BucharestBucharestRomania
  3. 3.Laboratory of Signals and SystemsCentraleSupélec - CNRS - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  4. 4.Laboratory of Signals and SystemsCNRS - CentraleSupélec - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations