Advertisement

Non-convex Region Description by Hyperplane Arrangements

  • Ionela ProdanEmail author
  • Florin Stoican
  • Sorin Olaru
  • Silviu-Iulian Niculescu
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

This chapter presents some prerequisites and basic notions which will be instrumental in the rest of the manuscript.

Keywords

Boolean Function Hyperplane Arrangement Feasible Space Merging Procedure Minkowski Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Orlik, P.: Hyperplane arrangements. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 1545–1547. Springer, US (2009)CrossRefGoogle Scholar
  2. 2.
    Stanley, R.: An introduction to hyperplane arrangements. In: Lecture notes, IAS/Park City Mathematics Institute. Citeseer (2004)Google Scholar
  3. 3.
    Blanchini, F.: Set invariance in control-a survey. Automatica 35(11), 1747–1767 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ziegler, G.: Lectures on Polytopes, vol. 152. Springer (1995)Google Scholar
  5. 5.
    Birkhoff, G.: Abstract linear dependence and lattices. Am. J. Math. 800–804 (1935)Google Scholar
  6. 6.
    Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Am. Math. Soc. (1975)Google Scholar
  7. 7.
    Buck, R.: Partition of space. Am. Math. Monthly 541–544 (1943)Google Scholar
  8. 8.
    Loechner, V.: Polylib: a library for manipulating parameterized polyhedra (1999)Google Scholar
  9. 9.
    Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method. Contrib. Theory Games 2, 51 (1959)zbMATHGoogle Scholar
  10. 10.
    Dantzig, G.: Fourier-Motzkin elimination and its dual. Technical Report DTIC Document (1972)Google Scholar
  11. 11.
    Fukuda, K.: CDD/CDD+ Reference Manual. Institute for operations Research ETH-Zentrum, Zurich (1999)Google Scholar
  12. 12.
    Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: A new algorithm for the projection of polytopes in halfspace representation. Citeseer (2004)Google Scholar
  13. 13.
    Bronstein, E.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wilde, D.: A library for doing polyhedral operations. Int. J. Parallel, Emergent Distrib. Syst. 15(3), 137–166 (2000)zbMATHGoogle Scholar
  15. 15.
    Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: I. containment problems. Discrete Math. 136(1–3), 129–174 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: II. volume and mixed volumes. NATO ASI Ser. C Math. Phys. Sci. Adv. Study Inst. 440, 373–466 (1994)Google Scholar
  17. 17.
    Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symbolic Comput. 38(4), 1261–1272 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
  19. 19.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1), 21–46 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Alamo, T., Bravo, J., Camacho, E.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035–1043 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dang, T.: Approximate reachability computation for polynomial systems. Hybrid Syst. Comput. Control 138–152 (2006)Google Scholar
  22. 22.
    Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Isr. J. Math. 64(1), 25–31 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Linhart, J.: Approximation of a ball by zonotopes using uniform distribution on the sphere. Archiv der Mathematik 53(1), 82–86 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of piecewise affine models based on hyperplane arrangements. In: Proceedings of the 23th American Control Conference, vol. 2, pp. 1190–1195. Boston (2004)Google Scholar
  25. 25.
    Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Prodan, I., Stoican, F., Olaru, S., Niculescu, S.I.: Enhancements on the hyperplanes arrangements in mixed-integer techniques. J. Optim. Theory Appl. 154(2), 549–572 (2012)Google Scholar
  27. 27.
    Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.: Logic minimization algorithms for VLSI synthesis, vol. 2. Springer (1984)Google Scholar
  28. 28.
    Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-parametric toolbox 3.0. In: Proceedings of the European Control Conference, pp. 502–510. Zürich (2013). http://control.ee.ethz.ch/~mpt
  29. 29.
    McGeer, P., Sanghavi, J., Brayton, R., Sangiovanni-Vicentelli, A.: Espresso-signature: a new exact minimizer for logic functions. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1(4), 432–440 (1993)CrossRefGoogle Scholar
  30. 30.
    Hlavička, J., Fišer, P.: Boom: a heuristic boolean minimizer. In: Proceedings of the 2001 IEEE/ACM International Conference On Computer-aided Design, pp. 439–442. IEEE Press (2001)Google Scholar
  31. 31.
    Geyer, T., Torrisi, F., Morari, M.: Efficient mode enumeration of compositional hybrid systems. Int. J. Control 83(2), 313–329 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kunz, W., Stoffel, D.: Logic optimization. In: Reasoning in Boolean Networks, pp. 101–161. Springer (1997)Google Scholar
  33. 33.
    Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press (1993)Google Scholar
  34. 34.
    Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst. 4(2), 233–249 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Blanchini, F., Miani, S.: Set-Theoretic Methods In Control. Birkhauser (2007)Google Scholar
  36. 36.
    Edelsbrunner, H., Seidel, R., Sharir, M.: On the zone theorem for hyperplane arrangements. New Results New Trends Comput. Sci. 108–123 (1991)Google Scholar
  37. 37.
    Orlik, P., Terao, H.: Arrangements of Hyperplanes, vol. 300. Springer (1992)Google Scholar
  38. 38.
    De Concini, C., Procesi, C.: Topics in Hyperplane Arrangements, Polytopes and Box-Splines. Springer (2010)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ionela Prodan
    • 1
    Email author
  • Florin Stoican
    • 2
  • Sorin Olaru
    • 3
  • Silviu-Iulian Niculescu
    • 4
  1. 1.Laboratory of Conception and Integration of SystemsUniversité Grenoble AlpesValenceFrance
  2. 2.Department of Automatic Control and Systems EngineeringPolitehnica University of BucharestBucharestRomania
  3. 3.Laboratory of Signals and SystemsCentraleSupélec - CNRS - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance
  4. 4.Laboratory of Signals and SystemsCNRS - CentraleSupélec - Université Paris-Sud, Université Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations