Skip to main content

Non-convex Region Description by Hyperplane Arrangements

  • Chapter
  • First Online:
Mixed-Integer Representations in Control Design

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

  • 824 Accesses

Abstract

This chapter presents some prerequisites and basic notions which will be instrumental in the rest of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relative interiors of these regions do not intersect, but their closures have as common boundary the affine subspace \(\mathscr {H}_i\) in (2.1).

  2. 2.

    Whenever the notation is not ambiguous, we use the shorthand \(\mathscr {A}\) for the arrangement \(\mathscr {A}(\mathbb H)\).

  3. 3.

    In here we will use the notions of polyhedron and polytope. The first represents the element of the polyhedral class under discussion whereas the latter denotes a bounded polyhedron.

  4. 4.

    From [18] we recall the following bounds on the number of facets \(f_i\) of order ‘i’ for a given zonope \(\mathscr {Z}\) (bounds which are reached whenever the zonotope’s generators are in general position):

    $$\begin{aligned}f_{0}\left( \mathscr {Z}\right) \le 2\sum \limits _{i=0}^{n-1}\left( {\begin{array}{c}m-1\\ i\end{array}}\right) ,\quad f_{n-1}\left( \mathscr {Z}\right) \le 2 \left( {\begin{array}{c}m\\ n-1\end{array}}\right) . \end{aligned}$$
  5. 5.

    A zonotope is topologically equivalent with an associated hyperplane arrangement (see Definition 2.1) offering thus efficient descriptions of the faces (e.g., by using reverse search algorithms as in [19]).

  6. 6.

    We assume without loss of generality that each set \(S_l\) is characterized by a unique tuple.

  7. 7.

    The intersection is meant to discern the cells which overlap with the obstacles. The common frontier is irrelevant in this context and is formally discarded by taking the interior of the intersection into consideration.

  8. 8.

    In the forthcoming chapter constructions which accept both formulations will be discussed in detail.

References

  1. Orlik, P.: Hyperplane arrangements. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 1545–1547. Springer, US (2009)

    Chapter  Google Scholar 

  2. Stanley, R.: An introduction to hyperplane arrangements. In: Lecture notes, IAS/Park City Mathematics Institute. Citeseer (2004)

    Google Scholar 

  3. Blanchini, F.: Set invariance in control-a survey. Automatica 35(11), 1747–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ziegler, G.: Lectures on Polytopes, vol. 152. Springer (1995)

    Google Scholar 

  5. Birkhoff, G.: Abstract linear dependence and lattices. Am. J. Math. 800–804 (1935)

    Google Scholar 

  6. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Am. Math. Soc. (1975)

    Google Scholar 

  7. Buck, R.: Partition of space. Am. Math. Monthly 541–544 (1943)

    Google Scholar 

  8. Loechner, V.: Polylib: a library for manipulating parameterized polyhedra (1999)

    Google Scholar 

  9. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method. Contrib. Theory Games 2, 51 (1959)

    MATH  Google Scholar 

  10. Dantzig, G.: Fourier-Motzkin elimination and its dual. Technical Report DTIC Document (1972)

    Google Scholar 

  11. Fukuda, K.: CDD/CDD+ Reference Manual. Institute for operations Research ETH-Zentrum, Zurich (1999)

    Google Scholar 

  12. Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: A new algorithm for the projection of polytopes in halfspace representation. Citeseer (2004)

    Google Scholar 

  13. Bronstein, E.: Approximation of convex sets by polytopes. J. Math. Sci. 153(6), 727–762 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wilde, D.: A library for doing polyhedral operations. Int. J. Parallel, Emergent Distrib. Syst. 15(3), 137–166 (2000)

    MATH  Google Scholar 

  15. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: I. containment problems. Discrete Math. 136(1–3), 129–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gritzmann, P., Klee, V.: On the complexity of some basic problems in computational convexity: II. volume and mixed volumes. NATO ASI Ser. C Math. Phys. Sci. Adv. Study Inst. 440, 373–466 (1994)

    Google Scholar 

  17. Fukuda, K.: From the zonotope construction to the Minkowski addition of convex polytopes. J. Symbolic Comput. 38(4), 1261–1272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fukuda, K.: Polytope examples. ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/polyfaq041121.pdf

  19. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1), 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Alamo, T., Bravo, J., Camacho, E.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035–1043 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dang, T.: Approximate reachability computation for polynomial systems. Hybrid Syst. Comput. Control 138–152 (2006)

    Google Scholar 

  22. Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Isr. J. Math. 64(1), 25–31 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Linhart, J.: Approximation of a ball by zonotopes using uniform distribution on the sphere. Archiv der Mathematik 53(1), 82–86 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of piecewise affine models based on hyperplane arrangements. In: Proceedings of the 23th American Control Conference, vol. 2, pp. 1190–1195. Boston (2004)

    Google Scholar 

  25. Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prodan, I., Stoican, F., Olaru, S., Niculescu, S.I.: Enhancements on the hyperplanes arrangements in mixed-integer techniques. J. Optim. Theory Appl. 154(2), 549–572 (2012)

    Google Scholar 

  27. Brayton, R., Hachtel, G., McMullen, C., Sangiovanni-Vincentelli, A.: Logic minimization algorithms for VLSI synthesis, vol. 2. Springer (1984)

    Google Scholar 

  28. Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-parametric toolbox 3.0. In: Proceedings of the European Control Conference, pp. 502–510. Zürich (2013). http://control.ee.ethz.ch/~mpt

  29. McGeer, P., Sanghavi, J., Brayton, R., Sangiovanni-Vicentelli, A.: Espresso-signature: a new exact minimizer for logic functions. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1(4), 432–440 (1993)

    Article  Google Scholar 

  30. Hlavička, J., Fišer, P.: Boom: a heuristic boolean minimizer. In: Proceedings of the 2001 IEEE/ACM International Conference On Computer-aided Design, pp. 439–442. IEEE Press (2001)

    Google Scholar 

  31. Geyer, T., Torrisi, F., Morari, M.: Efficient mode enumeration of compositional hybrid systems. Int. J. Control 83(2), 313–329 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunz, W., Stoffel, D.: Logic optimization. In: Reasoning in Boolean Networks, pp. 101–161. Springer (1997)

    Google Scholar 

  33. Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Cambridge University Press (1993)

    Google Scholar 

  34. Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems using a combination of zonotopes and polytopes. Nonlinear Anal. Hybrid Syst. 4(2), 233–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Blanchini, F., Miani, S.: Set-Theoretic Methods In Control. Birkhauser (2007)

    Google Scholar 

  36. Edelsbrunner, H., Seidel, R., Sharir, M.: On the zone theorem for hyperplane arrangements. New Results New Trends Comput. Sci. 108–123 (1991)

    Google Scholar 

  37. Orlik, P., Terao, H.: Arrangements of Hyperplanes, vol. 300. Springer (1992)

    Google Scholar 

  38. De Concini, C., Procesi, C.: Topics in Hyperplane Arrangements, Polytopes and Box-Splines. Springer (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionela Prodan .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Prodan, I., Stoican, F., Olaru, S., Niculescu, SI. (2016). Non-convex Region Description by Hyperplane Arrangements. In: Mixed-Integer Representations in Control Design. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-26995-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26995-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26993-1

  • Online ISBN: 978-3-319-26995-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics