Skip to main content

Extracellular Calcium Has Multiple Targets to Control Cell Proliferation

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99(3):1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  3. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  4. Brown EM (2013) Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract Res Clin Endocrinol Metab 27(3):333–343

    Article  CAS  PubMed  Google Scholar 

  5. Riccardi D, Kemp PJ (2012) The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu Rev Physiol 74:271–297

    Article  CAS  PubMed  Google Scholar 

  6. Wellendorph P, Brauner-Osborne H (2004) Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene 335:37–46

    Article  CAS  PubMed  Google Scholar 

  7. Alfadda TI, Saleh AM, Houillier P, Geibel JP (2014) Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 307(3):C221–C231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366(6455):575–580

    Article  CAS  PubMed  Google Scholar 

  9. Pi M, Quarles LD (2005) Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors. J Cell Biochem 95(6):1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940

    Article  CAS  PubMed  Google Scholar 

  11. Laude AJ, Simpson AW (2009) Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS J 276(7):1800–1816

    Article  CAS  PubMed  Google Scholar 

  12. Karlstad J, Sun Y, Singh BB (2012) Ca(2+) signaling: an outlook on the characterization of Ca(2+) channels and their importance in cellular functions. Adv Exp Med Biol 740:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Capiod T (2011) Cell proliferation, calcium influx and calcium channels. Biochimie 93(12):2075–2079

    Article  CAS  PubMed  Google Scholar 

  14. Capiod T (2013) The need for calcium channels in cell proliferation. Recent Patents Anti-Cancer Drug Discov 8(1):4–17

    Article  CAS  Google Scholar 

  15. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  16. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    Article  CAS  PubMed  Google Scholar 

  17. Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281(47):35855–35862

    Article  CAS  PubMed  Google Scholar 

  18. Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stathopulos PB, Ikura M (2013) Structural aspects of calcium-release activated calcium channel function. Channels (Austin Tex) 7(5):344–353

    Article  CAS  Google Scholar 

  20. Berna-Erro A, Redondo PC, Rosado JA (2012) Store-operated Ca(2+) entry. Adv Exp Med Biol 740:349–382

    Article  CAS  PubMed  Google Scholar 

  21. Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S (2014) The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol 223:1035–1054

    Article  CAS  PubMed  Google Scholar 

  22. Ong HL, de Souza LB, Cheng KT, Ambudkar IS (2014) Physiological functions and regulation of TRPC channels. Handb Exp Pharmacol 223:1005–1034

    Article  CAS  PubMed  Google Scholar 

  23. Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587(Pt 17):4181–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson JL, Shuttleworth TJ (2013) Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1. J Physiol 591(Pt 14):3507–3523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mignen O, Shuttleworth TJ (2000) I(ARC), a novel arachidonate-regulated, noncapacitative Ca(2+) entry channel. J Biol Chem 275(13):9114–9119

    Article  CAS  PubMed  Google Scholar 

  26. Gudermann T, Hofmann T, Mederos y Schnitzler M, Dietrich A (2004) Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Novartis Found Symp 258:103–118, discussion 118-122, 155-109, 263-106

    Article  CAS  PubMed  Google Scholar 

  27. Breitwieser GE, Gama L (2001) Calcium-sensing receptor activation induces intracellular calcium oscillations. Am J Physiol Cell Physiol 280(6):C1412–C1421

    CAS  PubMed  Google Scholar 

  28. Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27(3):315–331

    Article  CAS  PubMed  Google Scholar 

  29. Pi M, Quarles LD (2012) Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology 153(5):2062–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saidak Z, Mentaverri R, Brown EM (2009) The role of the calcium-sensing receptor in the development and progression of cancer. Endocr Rev 30(2):178–195

    Article  CAS  PubMed  Google Scholar 

  31. Borowiec AS, Bidaux G, Tacine R, Dubar P, Pigat N, Delcourt P, Mignen O, Capiod T (2014) Are Orai1 and Orai3 channels more important than calcium influx for cell proliferation? Biochim Biophys Acta 1843(2):464–472

    Article  CAS  PubMed  Google Scholar 

  32. Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev 9(5):399–410

    CAS  Google Scholar 

  33. Jairaman A, Prakriya M (2013) Molecular pharmacology of store-operated CRAC channels. Channels (Austin Tex) 7(5):402–414

    Article  CAS  Google Scholar 

  34. Rice LV, Bax HJ, Russell LJ, Barrett VJ, Walton SE, Deakin AM, Thomson SA, Lucas F, Solari R, House D, Begg M (2013) Characterization of selective calcium-release activated calcium channel blockers in mast cells and T-cells from human, rat, mouse and guinea-pig preparations. Eur J Pharmacol 704(1-3):49–57

    Article  CAS  PubMed  Google Scholar 

  35. Ashmole I, Duffy SM, Leyland ML, Morrison VS, Begg M, Bradding P (2012) CRACM/Orai ion channel expression and function in human lung mast cells. J Allergy Clin Immunol 129(6):1628–1635, e1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerasimenko JV, Gryshchenko O, Ferdek PE, Stapleton E, Hebert TO, Bychkova S, Peng S, Begg M, Gerasimenko OV, Petersen OH (2013) Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 110(32):13186–13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delmas P, Wanaverbecq N, Abogadie FC, Mistry M, Brown DA (2002) Signaling microdomains define the specificity of receptor-mediated InsP(3) pathways in neurons. Neuron 34(2):209–220

    Article  CAS  PubMed  Google Scholar 

  38. Trebak M, Bird GS, McKay RR, Putney JW Jr (2002) Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem 277(24):21617–21623

    Article  CAS  PubMed  Google Scholar 

  39. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem 279(34):35741–35748

    Article  CAS  PubMed  Google Scholar 

  41. Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127(5):525–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16(10):1145–1150

    Article  CAS  PubMed  Google Scholar 

  43. Chokshi R, Fruasaha P, Kozak JA (2012) 2-aminoethyl diphenyl borinate (2-APB) inhibits TRPM7 channels through an intracellular acidification mechanism. Channels (Austin Tex) 6(5):362–369

    Article  CAS  Google Scholar 

  44. Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K (2010) Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca(2+) entry via STIM proteins. Cell Calcium 47(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hendron E, Wang X, Zhou Y, Cai X, Goto J, Mikoshiba K, Baba Y, Kurosaki T, Wang Y, Gill DL (2014) Potent functional uncoupling between STIM1 and Orai1 by dimeric 2-aminodiphenyl borinate analogs. Cell Calcium 56(6):482–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hofer A, Kovacs G, Zappatini A, Leuenberger M, Hediger MA, Lochner M (2013) Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-APB), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg Med Chem 21(11):3202–3213

    Article  CAS  PubMed  Google Scholar 

  47. Djillani A, Nusse O, Dellis O (2014) Characterization of novel store-operated calcium entry effectors. Biochim Biophys Acta 1843(10):2341–2347

    Article  CAS  PubMed  Google Scholar 

  48. Maier T, Follmann M, Hessler G, Kleemann HW, Hachtel S, Fuchs B, Weissmann N, Linz W, Schmidt T, Löhn M, Schroeter K, Wang L, Rütten H, Strübing C (2015) Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels. Br J Pharmacol 172:3650–3660

    Google Scholar 

  49. Kohn CH, Liotta LA, Felder CC (1994) Signal transduction inhibitor compounds. US5359078

    Google Scholar 

  50. Johnson EA, Marks RS, Mandrekar SJ, Hillman SL, Hauge MD, Bauman MD, Wos EJ, Moore DF, Kugler JW, Windschitl HE, Graham DL, Bernath AM Jr, Fitch TR, Soori GS, Jett JR, Adjei AA, Perez EA (2008) Phase III randomized, double-blind study of maintenance CAI or placebo in patients with advanced non-small cell lung cancer (NSCLC) after completion of initial therapy (NCCTG 97-24-51). Lung Cancer 60(2):200–207

    Article  PubMed  Google Scholar 

  51. Mignen O, Brink C, Enfissi A, Nadkarni A, Shuttleworth TJ, Giovannucci DR, Capiod T (2005) Carboxyamidotriazole-induced inhibition of mitochondrial calcium import blocks capacitative calcium entry and cell proliferation in HEK-293 cells. J Cell Sci 118(Pt 23):5615–5623

    Article  CAS  PubMed  Google Scholar 

  52. Guo L, Luo L, Ju R, Chen C, Zhu L, Li J, Yu X, Ye C, Zhang D (2015) Carboxyamidotriazole: a novel inhibitor of both cAMP-phosphodiesterases and cGMP-phosphodiesterases. Eur J Pharmacol 746:14–21

    Article  CAS  PubMed  Google Scholar 

  53. Bowen CV, DeBay D, Ewart HS, Gallant P, Gormley S, Ilenchuk TT, Iqbal U, Lutes T, Martina M, Mealing G, Merkley N, Sperker S, Moreno MJ, Rice C, Syvitski RT, Stewart JM (2013) In vivo detection of human TRPV6-rich tumors with anti-cancer peptides derived from soricidin. PLoS ONE 8(3):e58866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cox JH, Hussell S, Sondergaard H, Roepstorff K, Bui JV, Deer JR, Zhang J, Li ZG, Lamberth K, Kvist PH, Padkjaer S, Haase C, Zahn S, Odegard VH (2013) Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS ONE 8(12):e82944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lin FF, Elliott R, Colombero A, Gaida K, Kelley L, Moksa A, Ho SY, Bykova E, Wong M, Rathanaswami P, Hu S, Sullivan JK, Nguyen HQ, McBride HJ (2013) Generation and characterization of fully human monoclonal antibodies against human Orai1 for autoimmune disease. J Pharmacol Exp Ther 345(2):225–238

    Article  CAS  PubMed  Google Scholar 

  56. Ay AS, Benzerdjerb N, Sevestre H, Ahidouch A, Ouadid-Ahidouch H (2013) Orai3 constitutes a native store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation. PLoS ONE 8(9):e72889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tao X, Zhao N, Jin H, Zhang Z, Liu Y, Wu J, Bast RC Jr, Yu Y, Feng Y (2013) FSH enhances the proliferation of ovarian cancer cells by activating transient receptor potential channel C3. Endocr Relat Cancer 20(3):415–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lindemann O, Umlauf D, Frank S, Schimmelpfennig S, Bertrand J, Pap T, Hanley PJ, Fabian A, Dietrich A, Schwab A (2013) TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J Immunol 190(11):5496–5505

    Article  CAS  PubMed  Google Scholar 

  59. Heiser JH, Schuwald AM, Sillani G, Ye L, Muller WE, Leuner K (2013) TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. J Neurochem 127(3):303–313

    Article  CAS  PubMed  Google Scholar 

  60. Zanou N, Schakman O, Louis P, Ruegg UT, Dietrich A, Birnbaumer L, Gailly P (2012) Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem 287(18):14524–14534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105(10):1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ishikawa J, Ohga K, Yoshino T, Takezawa R, Ichikawa A, Kubota H, Yamada T (2003) A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J Immunol 170(9):4441–4449

    Article  CAS  PubMed  Google Scholar 

  63. Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS ONE 9(2):e89292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Yao H, Peng F, Fan Y, Zhu X, Hu G, Buch SJ (2009) TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death Differ 16(12):1681–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Konig S, Browne S, Doleschal B, Schernthaner M, Poteser M, Machler H, Wittchow E, Braune M, Muik M, Romanin C, Groschner K (2013) Inhibition of Orai1-mediated Ca(2+) entry is a key mechanism of the antiproliferative action of sirolimus in human arterial smooth muscle. Am J Physiol Heart Circ Physiol 305(11):H1646–H1657

    Article  PubMed  CAS  Google Scholar 

  66. Sharma VK, Li B, Khanna A, Sehajpal PK, Suthanthiran M (1994) Which way for drug-mediated immunosuppression? Curr Opin Immunol 6(5):784–790

    Article  CAS  PubMed  Google Scholar 

  67. Ng SW, Nelson C, Parekh AB (2009) Coupling of Ca(2+) microdomains to spatially and temporally distinct cellular responses by the tyrosine kinase Syk. J Biol Chem 284(37):24767–24772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 284(1):563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20(3):389–399

    Article  CAS  PubMed  Google Scholar 

  70. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294(5541):333–339

    Article  CAS  PubMed  Google Scholar 

  71. Kar P, Parekh AB (2015) Distinct spatial Ca signatures selectively activate different NFAT transcription factor isoforms. Mol Cell 58(2):232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kar P, Samanta K, Kramer H, Morris O, Bakowski D, Parekh AB (2014) Dynamic assembly of a membrane signaling complex enables selective activation of NFAT by Orai1. Curr Biol 24(12):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang WC, Di Capite J, Singaravelu K, Nelson C, Halse V, Parekh AB (2008) Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. J Biol Chem 283(8):4622–4631

    Article  CAS  PubMed  Google Scholar 

  74. Esseltine JL, Scott JD (2013) AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol Sci 34(12):648–655

    Article  CAS  PubMed  Google Scholar 

  75. Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM (1997) cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19(1):185–196

    Article  CAS  PubMed  Google Scholar 

  76. Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55(2):261–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mignen O, Thompson JL, Shuttleworth TJ (2005) Arachidonate-regulated Ca2+-selective (ARC) channel activity is modulated by phosphorylation and involves an A-kinase anchoring protein. J Physiol 567(Pt 3):787–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thompson JL, Shuttleworth TJ (2015) Anchoring protein AKAP79-mediated PKA phosphorylation of STIM1 determines selective activation of the ARC channel, a store-independent Orai channel. J Physiol 593(3):559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shim AH, Tirado-Lee L, Prakriya M (2015) Structural and functional mechanisms of CRAC channel regulation. J Mol Biol 427(1):77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Srikanth S, Ribalet B, Gwack Y (2013) Regulation of CRAC channels by protein interactions and post-translational modification. Channels 7(5):354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gomez NM, Tamm ER, Straubeta O (2013) Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch 465(4):481–495

    Article  CAS  PubMed  Google Scholar 

  82. Ambily A, Kaiser WJ, Pierro C, Chamberlain EV, Li Z, Jones CI, Kassouf N, Gibbins JM, Authi KS (2014) The role of plasma membrane STIM1 and Ca(2+)entry in platelet aggregation. STIM1 binds to novel proteins in human platelets. Cell Signal 26(3):502–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee JE, Jeon IS, Han NE, Song HJ, Kim EG, Choi JW, Song KD, Lee HK, Choi JK (2013) Ubiquilin 1 interacts with Orai1 to regulate calcium mobilization. Mol Cells 35(1):41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  85. Popescu LM, Diculescu I, Zelck U, Ionescu N (1974) Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res 154(3):357–378

    Article  CAS  PubMed  Google Scholar 

  86. Isshiki M, Ying YS, Fujita T, Anderson RG (2002) A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 277(45):43389–43398

    Article  CAS  PubMed  Google Scholar 

  87. Isshiki M, Anderson RG (2003) Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic (Copenhagen, Den) 4(11):717–723

    Article  CAS  Google Scholar 

  88. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47(6):2068–2077

    Article  PubMed  CAS  Google Scholar 

  89. Duhon D, Bigelow RL, Coleman DT, Steffan JJ, Yu C, Langston W, Kevil CG, Cardelli JA (2010) The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol Carcinog 49(8):739–749

    CAS  PubMed  Google Scholar 

  90. Mineo C, James GL, Smart EJ, Anderson RG (1996) Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 271(20):11930–11935

    Article  CAS  PubMed  Google Scholar 

  91. Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746(3):260–273

    Article  CAS  PubMed  Google Scholar 

  92. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45(6):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A 106(47):20087–20092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278(29):27208–27215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels (Austin Tex) 5(5):424–431. doi:10.4161/chan.5.5.16471

    Article  CAS  Google Scholar 

  96. Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66(4):2038–2047

    Article  CAS  PubMed  Google Scholar 

  97. Mignen O, Thompson JL, Shuttleworth TJ (2003) Calcineurin directs the reciprocal regulation of calcium entry pathways in nonexcitable cells. J Biol Chem 278(41):40088–40096

    Article  CAS  PubMed  Google Scholar 

  98. Yeh YC, Parekh AB (2015) Distinct structural domains of caveolin-1 independently regulate Ca2+ release-activated Ca2+ channels and Ca2+ microdomain-dependent gene expression. Mol Cell Biol 35(8):1341–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271(7):3863–3868

    Article  CAS  PubMed  Google Scholar 

  100. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17(18):2205–2232

    Article  CAS  PubMed  Google Scholar 

  101. Yissachar N, Sharar Fischler T, Cohen AA, Reich-Zeliger S, Russ D, Shifrut E, Porat Z, Friedman N (2013) Dynamic response diversity of NFAT isoforms in individual living cells. Mol Cell 49(2):322–330

    Article  CAS  PubMed  Google Scholar 

  102. Gueguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M (2014) KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta 1843(10):2322–2333

    Article  CAS  PubMed  Google Scholar 

  103. Harmar AJ, Hills RA, Rosser EM, Jones M, Buneman OP, Dunbar DR, Greenhill SD, Hale VA, Sharman JL, Bonner TI, Catterall WA, Davenport AP, Delagrange P, Dollery CT, Foord SM, Gutman GA, Laudet V, Neubig RR, Ohlstein EH, Olsen RW, Peters J, Pin JP, Ruffolo RR, Searls DB, Wright MW, Spedding M (2009) IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Res 37(Database issue):D680–D685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57(4):463–472

    Article  CAS  PubMed  Google Scholar 

  105. Chantome A, Potier-Cartereau M, Clarysse L, Fromont G, Marionneau-Lambot S, Gueguinou M, Pages JC, Collin C, Oullier T, Girault A, Arbion F, Haelters JP, Jaffres PA, Pinault M, Besson P, Joulin V, Bougnoux P, Vandier C (2013) Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res 73(15):4852–4861

    Article  CAS  PubMed  Google Scholar 

  106. Gackiere F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2(9):941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crunelli V, Toth TI, Cope DW, Blethyn K, Hughes SW (2005) The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J Physiol 562(Pt 1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bean BP, McDonough SI (1998) Two for T. Neuron 20(5):825–828

    Article  CAS  PubMed  Google Scholar 

  109. Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F, Bidaux G, Urbain R, Gosset P, Delcourt P, Fleurisse L, Slomianny C, Dewailly E, Mauroy B, Bonnal JL, Skryma R, Prevarskaya N (2009) Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene 28(15):1792–1806

    Article  CAS  PubMed  Google Scholar 

  110. Hammadi M, Chopin V, Matifat F, Dhennin-Duthille I, Chasseraud M, Sevestre H, Ouadid-Ahidouch H (2012) Human ether a-gogo K(+) channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol 227(12):3837–3846

    Article  CAS  PubMed  Google Scholar 

  111. Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M (2015) Chloride channels in cancer: focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta 1848(10):2523–2531

    Google Scholar 

  112. Qu Z, Yao W, Yao R, Liu X, Yu K, Hartzell C (2014) The Ca(2+) -activated Cl(-) channel, ANO1 (TMEM16A), is a double-edged sword in cell proliferation and tumorigenesis. Cancer Med 3(3):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang GL, Qian Y, Qiu QY, Lan XJ, He H, Guan YY (2006) Interaction between Cl- channels and CRAC-related Ca2+ signaling during T lymphocyte activation and proliferation. Acta Pharmacol Sin 27(4):437–446

    Article  PubMed  CAS  Google Scholar 

  114. Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB (2004) Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 279(20):20941–20949

    Article  CAS  PubMed  Google Scholar 

  115. Antigny F, Jousset H, Konig S, Frieden M (2011) Thapsigargin activates Ca(2)+entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49(2):115–127

    Article  CAS  PubMed  Google Scholar 

  116. Sukumaran P, Lof C, Kemppainen K, Kankaanpaa P, Pulli I, Nasman J, Viitanen T, Tornquist K (2012) Canonical transient receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: importance of protein kinase C delta (PKCdelta) and stromal interaction molecule 2 (STIM2). J Biol Chem 287(53):44345–44360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Venkatachalam K, Zheng F, Gill DL (2003) Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 278(31):29031–29040

    Article  CAS  PubMed  Google Scholar 

  118. Venkatachalam K, Zheng F, Gill DL (2004) Control of TRPC and store-operated channels by protein kinase C. Novartis Found Symp 258:172–185, discussion 185-178, 263-176

    Article  CAS  PubMed  Google Scholar 

  119. Blackmore PF (2011) Biphasic effects of nitric oxide on calcium influx in human platelets. Thromb Res 127(1):e8–e14

    Article  CAS  PubMed  Google Scholar 

  120. Chen J, Crossland RF, Noorani MM, Marrelli SP (2009) Inhibition of TRPC1/TRPC3 by PKG contributes to NO-mediated vasorelaxation. Am J Physiol Heart Circ Physiol 297(1):H417–H424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101(8):2625–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yao X (2007) TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handb Exp Pharmacol 179:527–540

    Article  CAS  PubMed  Google Scholar 

  123. Yuasa K, Matsuda T, Tsuji A (2011) Functional regulation of transient receptor potential canonical 7 by cGMP-dependent protein kinase Ialpha. Cell Signal 23(7):1179–1187

    Article  CAS  PubMed  Google Scholar 

  124. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079

    Article  CAS  PubMed  Google Scholar 

  125. Mignen O, Thompson JL, Shuttleworth TJ (2008) Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 586(1):185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Faouzi M, Hague F, Potier M, Ahidouch A, Sevestre H, Ouadid-Ahidouch H (2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol 226(2):542–551

    Article  CAS  PubMed  Google Scholar 

  127. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103(11):1289–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11(6):669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Varnai P, Hunyady L, Balla T (2009) STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 30(3):118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE, Beech DJ (2008) Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res 103(8):e97–e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Darbellay B, Arnaudeau S, Konig S, Jousset H, Bader C, Demaurex N, Bernheim L (2009) STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem 284(8):5370–5380

    Article  CAS  PubMed  Google Scholar 

  132. El Boustany C, Katsogiannou M, Delcourt P, Dewailly E, Prevarskaya N, Borowiec AS, Capiod T (2010) Differential roles of STIM1, STIM2 and Orai1 in the control of cell proliferation and SOCE amplitude in HEK293 cells. Cell Calcium 47(4):350–359

    Article  PubMed  CAS  Google Scholar 

  133. Antigny F, Girardin N, Frieden M (2012) Transient receptor potential canonical channels are required for in vitro endothelial tube formation. J Biol Chem 287(8):5917–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dragoni S, Turin I, Laforenza U, Potenza DM, Bottino C, Glasnov TN, Prestia M, Ferulli F, Saitta A, Mosca A, Guerra G, Rosti V, Luinetti O, Ganini C, Porta C, Pedrazzoli P, Tanzi F, Montagna D, Moccia F (2014) Store-operated Ca2+ entry does not control proliferation in primary cultures of human metastatic renal cellular carcinoma. Biomed Res Int 2014:739494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Dubois C, Vanden Abeele F, Lehen’kyi V, Gkika D, Guarmit B, Lepage G, Slomianny C, Borowiec AS, Bidaux G, Benahmed M, Shuba Y, Prevarskaya N (2014) Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26(1):19–32

    Article  CAS  PubMed  Google Scholar 

  136. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  137. Ichikawa J, Inoue R (2014) TRPC6 regulates cell cycle progression by modulating membrane potential in bone marrow stromal cells. Br J Pharmacol 171(23):5280–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Song J, Wang Y, Li X, Shen Y, Yin M, Guo Y, Diao L, Liu Y, Yue D (2013) Critical role of TRPC6 channels in the development of human renal cell carcinoma. Mol Biol Rep 40(8):5115–5122

    Article  CAS  PubMed  Google Scholar 

  139. Kito H, Yamamura H, Suzuki Y, Yamamura H, Ohya S, Asai K, Imaizumi Y (2015) Regulation of store-operated Ca(2+) entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells. Biochem Biophys Res Commun 459(3):457–462

    Article  CAS  PubMed  Google Scholar 

  140. Faouzi M, Kischel P, Hague F, Ahidouch A, Benzerdjeb N, Sevestre H, Penner R, Ouadid-Ahidouch H (2013) ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells. Biochim Biophys Acta 1833(3):752–760

    Article  CAS  PubMed  Google Scholar 

  141. Sukumaran P, Lof C, Pulli I, Kemppainen K, Viitanen T, Tornquist K (2013) Significance of the transient receptor potential canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol Cell Endocrinol 374(1-2):10–21

    Article  CAS  PubMed  Google Scholar 

  142. Volpi M, Berlin RD (1988) Intracellular elevations of free calcium induced by activation of histamine H1 receptors in interphase and mitotic HeLa cells: hormone signal transduction is altered during mitosis. J Cell Biol 107(6 Pt 2):2533–2539

    Article  CAS  PubMed  Google Scholar 

  143. Preston SF, Sha’afi RI, Berlin RD (1991) Regulation of Ca2+ influx during mitosis: Ca2+ influx and depletion of intracellular Ca2+ stores are coupled in interphase but not mitosis. Cell Regul 2(11):915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Russa AD, Ishikita N, Masu K, Akutsu H, Saino T, Satoh Y (2008) Microtubule remodeling mediates the inhibition of store-operated calcium entry (SOCE) during mitosis in COS-7 cells. Arch Histol Cytol 71(4):249–263

    Article  CAS  PubMed  Google Scholar 

  145. Smyth JT, Petranka JG, Boyles RR, DeHaven WI, Fukushima M, Johnson KL, Williams JG, Putney JW Jr (2009) Phosphorylation of STIM1 underlies suppression of store-operated calcium entry during mitosis. Nat Cell Biol 11(12):1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tani D, Monteilh-Zoller MK, Fleig A, Penner R (2007) Cell cycle-dependent regulation of store-operated I(CRAC) and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium 41(3):249–260

    Article  CAS  PubMed  Google Scholar 

  147. Yu F, Sun L, Machaca K (2009) Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci U S A 106(41):17401–17406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191(3):523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Arredouani A, Yu F, Sun L, Machaca K (2010) Regulation of store-operated Ca2+ entry during the cell cycle. J Cell Sci 123(Pt 13):2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Patterson RL, van Rossum DB, Gill DL (1999) Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell 98(4):487–499

    Article  CAS  PubMed  Google Scholar 

  151. Bobe R, Hadri L, Lopez JJ, Sassi Y, Atassi F, Karakikes I, Liang L, Limon I, Lompre AM, Hatem SN, Hajjar RJ, Lipskaia L (2011) SERCA2a controls the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and proliferation in human vascular smooth muscle cells. J Mol Cell Cardiol 50(4):621–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hou MF, Kuo HC, Li JH, Wang YS, Chang CC, Chen KC, Chen WC, Chiu CC, Yang S, Chang WC (2011) Orai1/CRACM1 overexpression suppresses cell proliferation via attenuation of the store-operated calcium influx-mediated signalling pathway in A549 lung cancer cells. Biochim Biophys Acta 1810(12):1278–1284

    Article  CAS  PubMed  Google Scholar 

  153. Tajeddine N, Gailly P (2012) TRPC1 protein channel is major regulator of epidermal growth factor receptor signaling. J Biol Chem 287(20):16146–16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kuang CY, Yu Y, Wang K, Qian DH, Den MY, Huang L (2012) Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev 21(3):487–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4(7):530–538

    Article  CAS  PubMed  Google Scholar 

  156. Brennan SC, Finney BA, Lazarou M, Rosser AE, Scherf C, Adriaensen D, Kemp PJ, Riccardi D (2013) Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels. PLoS ONE 8(11):e80294

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rodland KD (2004) The role of the calcium-sensing receptor in cancer. Cell Calcium 35(3):291–295

    Article  CAS  PubMed  Google Scholar 

  158. Singh N, Promkan M, Liu G, Varani J, Chakrabarty S (2013) Role of calcium sensing receptor (CaSR) in tumorigenesis. Best Pract Res Clin Endocrinol Metab 27(3):455–463

    Article  CAS  PubMed  Google Scholar 

  159. Whitfield JF (2009) Calcium, calcium-sensing receptor and colon cancer. Cancer Lett 275(1):9–16

    Article  CAS  PubMed  Google Scholar 

  160. Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J (2008) Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem 283(36):24435–24447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD (2005) Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem 280(48):40201–40209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pi M, Quarles LD (2012) GPRC6A regulates prostate cancer progression. Prostate 72(4):399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fujiwara T, Kanazawa S, Ichibori R, Tanigawa T, Magome T, Shingaki K, Miyata S, Tohyama M, Hosokawa K (2014) L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway. PLoS ONE 9(3):e92168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wei J, Hanna T, Suda N, Karsenty G, Ducy P (2014) Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a. Diabetes 63(3):1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Haiman CA, Han Y, Feng Y, Xia L, Hsu C, Sheng X, Pooler LC, Patel Y, Kolonel LN, Carter E, Park K, Le Marchand L, Van Den Berg D, Henderson BE, Stram DO (2013) Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population. PLoS Genet 9(3):e1003419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Karp HJ, Ketola ME, Lamberg-Allardt CJ (2009) Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br J Nutr 102(9):1341–1347

    Article  CAS  PubMed  Google Scholar 

  167. Otani T, Mizokami A, Hayashi Y, Gao J, Mori Y, Nakamura S, Takeuchi H, Hirata M (2015) Signaling pathway for adiponectin expression in adipocytes by osteocalcin. Cell Signal 27(3):532–544

    Article  CAS  PubMed  Google Scholar 

  168. El Hiani Y, Lehen’kyi V, Ouadid-Ahidouch H, Ahidouch A (2009) Activation of the calcium-sensing receptor by high calcium induced breast cancer cell proliferation and TRPC1 cation channel over-expression potentially through EGFR pathways. Arch Biochem Biophys 486(1):58–63

    Article  PubMed  CAS  Google Scholar 

  169. Chow JY, Estrema C, Orneles T, Dong X, Barrett KE, Dong H (2011) Calcium-sensing receptor modulates extracellular Ca(2+) entry via TRPC-encoded receptor-operated channels in human aortic smooth muscle cells. Am J Physiol Cell Physiol 301(2):C461–C468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Meng K, Xu J, Zhang C, Zhang R, Yang H, Liao C, Jiao J (2014) Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS ONE 9(6):e98777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Breitwieser GE, Miedlich SU, Zhang M (2004) Calcium sensing receptors as integrators of multiple metabolic signals. Cell Calcium 35(3):209–216

    Article  CAS  PubMed  Google Scholar 

  172. Robertson WG, Marshall RW (1981) Ionized calcium in body fluids. Crit Rev Clin Lab Sci 15(2):85–125

    Article  CAS  PubMed  Google Scholar 

  173. Chattopadhyay N, Ye CP, Yamaguchi T, Kifor O, Vassilev PM, Nishimura R, Brown EM (1998) Extracellular calcium-sensing receptor in rat oligodendrocytes: expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia 24(4):449–458

    Article  CAS  PubMed  Google Scholar 

  174. Harno E, Edwards G, Geraghty AR, Ward DT, Dodd RH, Dauban P, Faure H, Ruat M, Weston AH (2008) Evidence for the presence of GPRC6A receptors in rat mesenteric arteries. Cell Calcium 44(2):210–219

    Article  CAS  PubMed  Google Scholar 

  175. Vysotskaya ZV, Moss CR 2nd, Gilbert CA, Gabriel SA, Gu Q (2014) Modulation of BK channel activities by calcium-sensing receptor in rat bronchopulmonary sensory neurons. Respir Physiol Neurobiol 203:35–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank ARTP (Association pour la Recherche sur les Tumeurs de la Prostate) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Capiod .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The author declares no potential conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capiod, T. (2016). Extracellular Calcium Has Multiple Targets to Control Cell Proliferation. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_7

Download citation

Publish with us

Policies and ethics