Skip to main content

Transient Receptor Potential Canonical 7 (TRPC7), a Calcium (Ca2+) Permeable Non-selective Cation Channel

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Transient receptor potential canonical subfamily, member 7 (TRPC7) is the most recently identified member of the TRPC family of Ca2+-permeable non-selective cation channels. The gene encoding the TRPC7 channel plasma membrane protein was first cloned from mouse brain. TRPC7 mRNA and protein have been detected in cell types derived from multiple organ systems from various species including humans. Gq-coupled protein receptor activation is the predominant mode of TRPC7 activation. Lipid metabolites involved in the phospholipase C (PLC) signaling pathway, including diacylglycerol (DAG) and its precursor the phosphatidylinositol-4,5-bisphosphate (PIP2), have been shown to be direct regulators of TRPC7 channel. TRPC7 channels have been linked to the regulation of various cellular functions however, the depth of our understanding of TRPC7 channel function and regulation is limited in comparison to other TRP channel family members. This review takes a historical look at our current knowledge of TRPC7 mechanisms of activation and its role in cellular physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham DE, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu N, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9(2):229–231

    Article  CAS  PubMed  Google Scholar 

  2. Wissenbach U, Schroth G, Philipp S, Flockerzi V (1998) Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts. FEBS Lett 429(1):61–66

    Article  CAS  PubMed  Google Scholar 

  3. Trebak M, Lemonnier L, DeHaven WI, Wedel BJ, Bird GS, Putney JW Jr (2009) Complex functions of phosphatidylinositol 4,5-bisphosphate in regulation of TRPC5 cation channels. Pflugers Arch 457(4):757–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    Article  CAS  PubMed  Google Scholar 

  5. Walker RL, Hume JR, Horowitz B (2001) Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 280(5):C1184–C1192

    CAS  PubMed  Google Scholar 

  6. Sekaran S, Lall GS, Ralphs KL, Wolstenholme AJ, Lucas RJ, Foster RG, Hankins MW (2007) 2-Aminoethoxydiphenylborane is an acute inhibitor of directly photosensitive retinal ganglion cell activity in vitro and in vivo. J Neurosci Off J Soc Neurosci 27(15):3981–3986

    Article  CAS  Google Scholar 

  7. Boisseau S, Kunert-Keil C, Lucke S, Bouron A (2009) Heterogeneous distribution of TRPC proteins in the embryonic cortex. Histochem Cell Biol 131(3):355–363

    Article  CAS  PubMed  Google Scholar 

  8. Asai Y, Holt JR, Geleoc GS (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11(1):27–37

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35(10):1823–1830

    Article  CAS  PubMed  Google Scholar 

  10. Abed E, Labelle D, Martineau C, Loghin A, Moreau R (2009) Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 26(3):146–158

    Article  CAS  PubMed  Google Scholar 

  11. Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 33(5):856–867

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tabarean IV (2012) Persistent histamine excitation of glutamatergic preoptic neurons. PLoS One 7(10):e47700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ben-Mabrouk F, Tryba AK (2010) Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur J Neurosci 31(7):1219–1232

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277(50):48303–48310

    Article  CAS  PubMed  Google Scholar 

  15. Buniel MC, Schilling WP, Kunze DL (2003) Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J Comp Neurol 464(3):404–413

    Article  CAS  PubMed  Google Scholar 

  16. Berg AP, Sen N, Bayliss DA (2007) TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci Off J Soc Neurosci 27(33):8845–8856

    Article  CAS  Google Scholar 

  17. Chung YH, Kim D, Moon NJ, Oh CS, Lee E, Shin DH, Kim SS, Lee WB, Lee JY, Cha CI (2007) Immunohistochemical study on the distribution of canonical transient receptor potential channels in rat basal ganglia. Neurosci Lett 422(1):18–23

    Article  CAS  PubMed  Google Scholar 

  18. Satoh S, Tanaka H, Ueda Y, Oyama J, Sugano M, Sumimoto H, Mori Y, Makino N (2007) Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 294(1−2):205–215

    Article  CAS  PubMed  Google Scholar 

  19. Ohana L, Newell EW, Stanley EF, Schlichter LC (2009) The Ca2+ release-activated Ca2+ current (I(CRAC)) mediates store-operated Ca2+ entry in rat microglia. Channels 3(2):129–139

    Article  CAS  PubMed  Google Scholar 

  20. Cvetkovic-Lopes V, Eggermann E, Uschakov A, Grivel J, Bayer L, Jones BE, Serafin M, Muhlethaler M (2010) Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels. PLoS One 5(12):e15673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Numaga T, Wakamori M, Mori Y (2007) Trpc7. In: Transient receptor potential (TRP) channels, vol 179, Handbook of experimental pharmacology. Springer, Berlin/Heidelberg, pp 143–151

    Chapter  Google Scholar 

  22. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279(42):43392–43402

    Article  CAS  PubMed  Google Scholar 

  23. Maruyama Y, Nakanishi Y, Walsh EJ, Wilson DP, Welsh DG, Cole WC (2006) Heteromultimeric TRPC6-TRPC7 channels contribute to arginine vasopressin-induced cation current of A7r5 vascular smooth muscle cells. Circ Res 98(12):1520–1527

    Article  CAS  PubMed  Google Scholar 

  24. Lavender V, Chong S, Ralphs K, Wolstenholme AJ, Reaves BJ (2008) Increasing the expression of calcium-permeable TRPC3 and TRPC7 channels enhances constitutive secretion. Biochem J 413(3):437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Facemire CS, Mohler PJ, Arendshorst WJ (2004) Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation. Am J Physiol Ren Physiol 286(3):F546–F551

    Article  CAS  Google Scholar 

  26. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(4):L848–L858

    Article  CAS  PubMed  Google Scholar 

  27. Wu D, Huang W, Richardson PM, Priestley JV, Liu M (2008) TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem 283(1):416–426

    Article  CAS  PubMed  Google Scholar 

  28. Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem 277(14):12302–12309

    Article  CAS  PubMed  Google Scholar 

  29. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109(1−2):95–104

    Article  CAS  PubMed  Google Scholar 

  30. Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM (2002) Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod 8(10):946–951

    Article  CAS  PubMed  Google Scholar 

  31. Yang M, Gupta A, Shlykov SG, Corrigan R, Tsujimoto S, Sanborn BM (2002) Multiple Trp isoforms implicated in capacitative calcium entry are expressed in human pregnant myometrium and myometrial cells. Biol Reprod 67(3):988–994

    Article  CAS  PubMed  Google Scholar 

  32. Yip H, Chan WY, Leung PC, Kwan HY, Liu C, Huang Y, Michel V, Yew DT, Yao X (2004) Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122(6):553–561

    Article  CAS  PubMed  Google Scholar 

  33. Cai S, Fatherazi S, Presland RB, Belton CM, Izutsu KT (2005) TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J Dermatol Sci 40(1):21–28

    Article  CAS  PubMed  Google Scholar 

  34. Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280(33):29559–29569

    Article  CAS  PubMed  Google Scholar 

  35. Beck B, Zholos A, Sydorenko V, Roudbaraki M, Lehen’kyi V, Bordat P, Prevarskaya N, Skryma R (2006) TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol 126(9):1982–1993

    Article  CAS  PubMed  Google Scholar 

  36. Nasman J, Bart G, Larsson K, Louhivuori L, Peltonen H, Akerman KE (2006) The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J Neurosci Off J Soc Neurosci 26(42):10658–10666

    Article  CAS  Google Scholar 

  37. Finney-Hayward TK, Popa MO, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell RE, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE (2010) Expression of transient receptor potential C6 channels in human lung macrophages. Am J Respir Cell Mol Biol 43(3):296–304

    Article  CAS  PubMed  Google Scholar 

  38. Gogebakan B, Bayraktar R, Suner A, Balakan O, Ulasli M, Izmirli M, Oztuzcu S, Camci C (2014) Do fasudil and Y-27632 affect the level of transient receptor potential (TRP) gene expressions in breast cancer cell lines? Tumour Biol: J Int Soc Oncodevelopmental Biol Med 35(8):8033–8041

    Article  CAS  Google Scholar 

  39. Dietrich A, Kalwa H, Rost BR, Gudermann T (2005) The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflugers Arch 451(1):72–80

    Article  CAS  PubMed  Google Scholar 

  40. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276(24):21303–21310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561(Pt 2):415–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559(Pt 3):685–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588(Pt 9):1419–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lievremont JP, Numaga T, Vazquez G, Lemonnier L, Hara Y, Mori E, Trebak M, Moss SE, Bird GS, Mori Y, Putney JW Jr (2005) The role of canonical transient receptor potential 7 in B-cell receptor-activated channels. J Biol Chem 280(42):35346–35351

    Article  CAS  PubMed  Google Scholar 

  47. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33(5−6):451–461

    Article  CAS  PubMed  Google Scholar 

  49. Lievremont JP, Bird GS, Putney JW Jr (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68(3):758–762

    CAS  PubMed  Google Scholar 

  50. Urban N, Hill K, Wang L, Kuebler WM, Schaefer M (2012) Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 51(2):194–206

    Article  CAS  PubMed  Google Scholar 

  51. Vazquez G, Bird GS, Mori Y, Putney JW Jr (2006) Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 281(35):25250–25258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX (2014) PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol 143(2):183–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43(5):506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Linseman DA, McEwen EL, Sorensen SD, Fisher SK (1998) Cytoskeletal and phosphoinositide requirements for muscarinic receptor signaling to focal adhesion kinase and paxillin. J Neurochem 70(3):940–950

    Article  CAS  PubMed  Google Scholar 

  55. Imai Y, Itsuki K, Okamura Y, Inoue R, Mori MX (2012) A self-limiting regulation of vasoconstrictor-activated TRPC3/C6/C7 channels coupled to PI(4,5)P(2)-diacylglycerol signalling. J Physiol 590(Pt 5):1101–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Worley PF, Zeng W, Huang GN, Yuan JP, Kim JY, Lee MG, Muallem S (2007) TRPC channels as STIM1-regulated store-operated channels. Cell Calcium 42(2):205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lievremont JP, Bird GS, Putney JW Jr (2004) Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol 287(6):C1709–C1716

    Article  CAS  PubMed  Google Scholar 

  58. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol: CB 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457(2):405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  62. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lemonnier L, Trebak M, Lievremont JP, Bird GS, Putney JW Jr (2006) Protection of TRPC7 cation channels from calcium inhibition by closely associated SERCA pumps. FASEB J: Off Publ Fed Am Soc Exp Biol 20(3):503–505

    CAS  Google Scholar 

  64. Yuasa K, Matsuda T, Tsuji A (2011) Functional regulation of transient receptor potential canonical 7 by cGMP-dependent protein kinase Ialpha. Cell Signal 23(7):1179–1187

    Article  CAS  PubMed  Google Scholar 

  65. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280(19):19393–19400

    Article  CAS  PubMed  Google Scholar 

  66. Wedel BJ, Vazquez G, McKay RR, St JBG, Putney JW Jr (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278(28):25758–25765

    Article  CAS  PubMed  Google Scholar 

  67. Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5(11):e13984

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lawler K, Foran E, O’Sullivan G, Long A, Kenny D (2006) Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am J Physiol Cell Physiol 291(4):C668–C677

    Article  CAS  PubMed  Google Scholar 

  69. Phelan KD, Shwe UT, Abramowitz J, Birnbaumer L, Zheng F (2014) Critical role of canonical transient receptor potential channel 7 in initiation of seizures. Proc Natl Acad Sci U S A 111(31):11533–11538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trebak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, X., Spinelli, A.M., Masiello, T., Trebak, M. (2016). Transient Receptor Potential Canonical 7 (TRPC7), a Calcium (Ca2+) Permeable Non-selective Cation Channel. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_11

Download citation

Publish with us

Policies and ethics