Skip to main content

Second Messenger-Operated Calcium Entry Through TRPC6

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 898))

Abstract

Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca2+. This latter response can reflect the entry of Ca2+ through open TRPC6 channels but it can also be due to the Na+/Ca2+ exchanger (operating in its reverse mode) or voltage-gated Ca2+ channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clapham DE, Julius D, Montell C, Schultz G (2005) International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57(4):427–450

    Article  CAS  PubMed  Google Scholar 

  2. Minke B (2010) The history of the Drosophila TRP channel: the birth of a new channel superfamily. J Neurogenet 24(4):216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85(5):661–671

    Article  CAS  PubMed  Google Scholar 

  4. Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr (2004) The mammalian TRPC cation channels. Biochim Biophys Acta 1742(1–3):21–36

    Article  CAS  PubMed  Google Scholar 

  5. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23(2):297–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595–598

    Article  CAS  PubMed  Google Scholar 

  7. Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272(47):29672–29680

    Article  CAS  PubMed  Google Scholar 

  8. D’Esposito M, Strazzullo M, Cuccurese M, Spalluto C, Rocchi M, D’Urso M, Ciccodicola A (1998) Identification and assignment of the human transient receptor potential channel 6 gene TRPC6 to chromosome 11q21-->q22. Cytogenet Cell Genet 83(1–2):46–47

    Google Scholar 

  9. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397(6716):259–263

    Article  CAS  PubMed  Google Scholar 

  10. Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. Molecular structures and functional characterization. J Biol Chem 276(16):13331–13339

    Article  CAS  PubMed  Google Scholar 

  12. Vazquez E, Valverde MA (2006) A review of TRP channels splicing. Semin Cell Dev Biol 17(6):607–617

    Article  CAS  PubMed  Google Scholar 

  13. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2(6):387–396

    Article  CAS  PubMed  Google Scholar 

  14. Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38(3–4):233–252

    Article  CAS  PubMed  Google Scholar 

  15. Mizuno N, Kitayama S, Saishin Y, Shimada S, Morita K, Mitsuhata C, Kurihara H, Dohi T (1999) Molecular cloning and characterization of rat trp homologues from brain. Brain Res Mol Brain Res 64(1):41–51

    Article  CAS  PubMed  Google Scholar 

  16. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24(8):311–316

    Article  CAS  PubMed  Google Scholar 

  17. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6):1435–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol BioSyst 4(5):372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu MX (2005) Multiple roles of calmodulin and other Ca(2+)-binding proteins in the functional regulation of TRP channels. Pflugers Arch 451(1):105–115

    Article  CAS  PubMed  Google Scholar 

  20. Lepage PK, Lussier MP, Barajas-Martinez H, Bousquet SM, Blanchard AP, Francoeur N, Dumaine R, Boulay G (2006) Identification of two domains involved in the assembly of transient receptor potential canonical channels. J Biol Chem 281(41):30356–30364

    Article  CAS  PubMed  Google Scholar 

  21. Putney JW Jr (2004) The enigmatic TRPCs: multifunctional cation channels. Trends Cell Biol 14(6):282–286

    Article  CAS  PubMed  Google Scholar 

  22. Jung S, Muhle A, Schaefer M, Strotmann R, Schultz G, Plant TD (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278(6):3562–3571

    Article  CAS  PubMed  Google Scholar 

  23. Wedel BJ, Vazquez G, McKay RR, St JBG, Putney JW Jr (2003) A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem 278(28):25758–25765

    Article  CAS  PubMed  Google Scholar 

  24. Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX (2014) PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol 143(2):183–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aires V, Hichami A, Boulay G, Khan NA (2007) Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: a comparative study with DAG-containing docosahexaenoic acid. Biochimie 89(8):926–937

    Article  CAS  PubMed  Google Scholar 

  26. Kim JM, Heo K, Choi J, Kim K, An W (2013) The histone variant MacroH2A regulates Ca(2+) influx through TRPC3 and TRPC6 channels. Oncogenesis 2, e77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular {{alpha}}1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88(3):325–332

    Article  CAS  PubMed  Google Scholar 

  28. Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) Human TRPC6 expressed in HEK 293 cells forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572(Pt 2):359–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278(34):31709–31716

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhuri P, Colles SM, Bhat M, Van Wagoner DR, Birnbaumer L, Graham LM (2008) Elucidation of a TRPC6-TRPC5 channel cascade that restricts endothelial cell movement. Mol Biol Cell 19(8):3203–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hardie RC (2003) Regulation of TRP channels via lipid second messengers. Annu Rev Physiol 65:735–759

    Article  CAS  PubMed  Google Scholar 

  32. Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon Y, Hofmann T, Montell C (2007) Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 25(4):491–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43(37):11701–11708

    Article  CAS  PubMed  Google Scholar 

  35. Lemonnier L, Trebak M, Putney JW Jr (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43(5):506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albert AP (2011) Gating mechanisms of canonical transient receptor potential channel proteins: role of phosphoinositols and diacylglycerol. Adv Exp Med Biol 704:391–411

    Article  CAS  PubMed  Google Scholar 

  37. Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279(21):22047–22056

    Article  CAS  PubMed  Google Scholar 

  38. Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561(Pt 2):415–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albert AP, Large WA (2003) Synergism between inositol phosphates and diacylglycerol on native TRPC6-like channels in rabbit portal vein myocytes. J Physiol 552(Pt 3):789–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Putney JW (1997) Capacitative calcium entry. Landes Biochemichal Publishing, Austin

    Book  Google Scholar 

  41. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280(19):19393–19400

    Article  CAS  PubMed  Google Scholar 

  42. Nishida M, Onohara N, Sato Y, Suda R, Ogushi M, Tanabe S, Inoue R, Mori Y, Kurose H (2007) Galpha12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibroblast formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem 282(32):23117–23128

    Article  CAS  PubMed  Google Scholar 

  43. Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100(8):2801–2811

    Article  CAS  PubMed  Google Scholar 

  44. Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284(2):C316–C330

    Article  CAS  PubMed  Google Scholar 

  45. El Boustany C, Bidaux G, Enfissi A, Delcourt P, Prevarskaya N, Capiod T (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47(6):2068–2077

    Article  PubMed  CAS  Google Scholar 

  46. Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33(5–6):293–298

    Article  CAS  PubMed  Google Scholar 

  47. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  48. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  CAS  PubMed  Google Scholar 

  49. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  50. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13(9):549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca(2+) channels. Cell Signal 21(4):457–461

    Article  CAS  PubMed  Google Scholar 

  54. Brechard S, Melchior C, Plancon S, Schenten V, Tschirhart EJ (2008) Store-operated Ca2+ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes. Cell Calcium 44(5):492–506

    Article  CAS  PubMed  Google Scholar 

  55. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways. Biochem J 420(2):267–276

    Article  CAS  PubMed  Google Scholar 

  56. Ramanathan G, Gupta S, Thielmann I, Pleines I, Varga-Szabo D, May F, Mannhalter C, Dietrich A, Nieswandt B, Braun A (2012) Defective diacylglycerol-induced Ca2+ entry but normal agonist-induced activation responses in TRPC6-deficient mouse platelets. J Thromb Haemost 10(3):419–429

    Article  CAS  PubMed  Google Scholar 

  57. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103(44):16586–16591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455(6):1097–1103

    Article  CAS  PubMed  Google Scholar 

  59. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27(23):3092–3103

    Article  CAS  PubMed  Google Scholar 

  60. Schleifenbaum J, Kassmann M, Szijarto IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M (2014) Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 115(2):263–272

    Article  CAS  PubMed  Google Scholar 

  61. Anfinogenova Y, Brett SE, Walsh MP, Harraz OF, Welsh DG (2011) Do TRPC-like currents and G protein-coupled receptors interact to facilitate myogenic tone development? Am J Physiol Heart Circ Physiol 301(4):H1378–H1388

    Article  CAS  PubMed  Google Scholar 

  62. Wilson C, Dryer SE (2014) A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades. Am J Physiol Renal Physiol 306(9):F1018–F1025

    Article  CAS  PubMed  Google Scholar 

  63. Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2(5):120068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29(19):6217–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dyachenko V, Husse B, Rueckschloss U, Isenberg G (2009) Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45(1):38–54

    Article  CAS  PubMed  Google Scholar 

  66. Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE (2013) Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 305(3):C276–C289

    Article  CAS  PubMed  Google Scholar 

  67. Anderson M, Roshanravan H, Khine J, Dryer SE (2014) Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J Cell Physiol 229(4):434–442

    Article  CAS  PubMed  Google Scholar 

  68. Roshanravan H, Dryer SE (2014) ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. Am J Physiol Renal Physiol 306(9):F1088–F1097

    Article  CAS  PubMed  Google Scholar 

  69. Leuner K, Kazanski V, Muller M, Essin K, Henke B, Gollasch M, Harteneck C, Muller WE (2007) Hyperforin – a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 21(14):4101–4111

    Article  CAS  PubMed  Google Scholar 

  70. Muller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp CM, Gollasch M, Boehncke WH, Harteneck C, Muller WE, Leuner K (2008) Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 283(49):33942–33954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM, Harteneck C, Inoue T, Pozzo-Miller L (2013) Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels. Hippocampus 23(1):40–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ding Y, Winters A, Ding M, Graham S, Akopova I, Muallem S, Wang Y, Hong JH, Gryczynski Z, Yang SH, Birnbaumer L, Ma R (2011) Reactive oxygen species-mediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 286(36):31799–31809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS, Muller WE (2010) Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators – identification of a novel pharmacophore. Mol Pharmacol 77(3):368–377

    Article  CAS  PubMed  Google Scholar 

  74. Sell TS, Belkacemi T, Flockerzi V, Beck A (2014) Protonophore properties of hyperforin are essential for its pharmacological activity. Sci Rep 4:7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282(2):C347–C359

    Article  CAS  PubMed  Google Scholar 

  76. Foster RR, Zadeh MA, Welsh GI, Satchell SC, Ye Y, Mathieson PW, Bates DO, Saleem MA (2009) Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells. Cell Calcium 45(4):384–390

    Article  CAS  PubMed  Google Scholar 

  77. Tesfai Y, Brereton HM, Barritt GJ (2001) A diacylglycerol-activated Ca2+ channel in PC12 cells (an adrenal chromaffin cell line) correlates with expression of the TRP-6 (transient receptor potential) protein. Biochem J 358(Pt 3):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tu P, Brandolin G, Bouron A (2009) The anti-inflammatory agent flufenamic acid depresses store-operated channels by altering mitochondrial calcium homeostasis. Neuropharmacology 56:1010–1016

    Article  CAS  PubMed  Google Scholar 

  79. Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148(3):264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Graham S, Ding M, Ding Y, Sours-Brothers S, Luchowski R, Gryczynski Z, Yorio T, Ma H, Ma R (2010) Canonical transient receptor potential 6 (TRPC6), a redox-regulated cation channel. J Biol Chem 285(30):23466–23476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim EY, Anderson M, Dryer SE (2012) Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol 82(4):728–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Graham S, Gorin Y, Abboud HE, Ding M, Lee DY, Shi H, Ding Y, Ma R (2011) Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol 301(2):C304–C315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cayouette S, Lussier MP, Mathieu E-L, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279(8):7241–7246

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki F, Morishima S, Tanaka T, Muramatsu I (2007) Snapin, a new regulator of receptor signaling, augments {alpha}1A-adrenoceptor-operated calcium influx through TRPC6. J Biol Chem 282(40):29563–29573. doi:10.1074/jbc.M702063200

    Article  CAS  PubMed  Google Scholar 

  85. Xie J, Cha SK, An SW, Kuro OM, Birnbaumer L, Huang CL (2012) Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 3:1238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Shin YC, Shin SY, So I, Kwon D, Jeon JH (2011) TRIP Database: a manually curated database of protein-protein interactions for mammalian TRP channels. Nucleic Acids Res 39(Database issue):D356–D361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ju M, Shi J, Saleh SN, Albert AP, Large WA (2010) Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol 588(Pt 9):1419–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Renal Physiol 290(6):F1507–F1515

    Article  CAS  PubMed  Google Scholar 

  89. Chu X, Tong Q, Cheung JY, Wozney J, Conrad K, Mazack V, Zhang W, Stahl R, Barber DL, Miller BA (2004) Interaction of TRPC2 and TRPC6 in erythropoietin modulation of calcium influx. J Biol Chem 279(11):10514–10522

    Article  CAS  PubMed  Google Scholar 

  90. Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS (2005) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280(13):12908–12916

    Article  CAS  PubMed  Google Scholar 

  91. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    Article  CAS  PubMed  Google Scholar 

  93. Hirschler-Laszkiewicz I, Tong Q, Conrad K, Zhang W, Flint WW, Barber AJ, Barber DL, Cheung JY, Miller BA (2009) TRPC3 activation by erythropoietin is modulated by TRPC6. J Biol Chem 284(7):4567–4581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451(1):87–98

    Article  CAS  PubMed  Google Scholar 

  95. Albarran L, Lopez JJ, Dionisio N, Smani T, Salido GM, Rosado JA (2013) Transient receptor potential ankyrin-1 (TRPA1) modulates store-operated Ca(2+) entry by regulation of STIM1-Orai1 association. Biochim Biophys Acta 1833(12):3025–3034

    Article  CAS  PubMed  Google Scholar 

  96. Hsu YJ, Hoenderop JG, Bindels RJ (2007) TRP channels in kidney disease. Biochim Biophys Acta 1772(8):928–936

    Article  CAS  PubMed  Google Scholar 

  97. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2006) Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol 290(5):F1241–F1252

    Article  CAS  PubMed  Google Scholar 

  98. Goel M, Zuo CD, Sinkins WG, Schilling WP (2007) TRPC3 channels colocalize with Na+/Ca2+ exchanger and Na+ pump in axial component of transverse-axial tubular system of rat ventricle. Am J Physiol Heart Circ Physiol 292(2):H874–H883

    Article  CAS  PubMed  Google Scholar 

  99. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 96(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Antigny F, Norez C, Dannhoffer L, Bertrand J, Raveau D, Corbi P, Jayle C, Becq F, Vandebrouck C (2011) Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis. Am J Respir Cell Mol Biol 44(1):83–90

    Article  CAS  PubMed  Google Scholar 

  101. Kim EY, Alvarez-Baron CP, Dryer SE (2009) Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 75(3):466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587(Pt 10):2275–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Albarran L, Dionisio N, Lopez E, Salido GM, Redondo PC, Rosado JA (2014) STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochem J 463(3):373–381

    Article  CAS  PubMed  Google Scholar 

  105. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA (2012) Capacitative and non-capacitative signaling complexes in human platelets. Biochim Biophys Acta 1823(8):1242–1251

    Article  CAS  PubMed  Google Scholar 

  108. Friedlova E, Grycova L, Holakovska B, Silhan J, Janouskova H, Sulc M, Obsilova V, Obsil T, Teisinger J (2010) The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochem Int 56(2):363–366

    Article  CAS  PubMed  Google Scholar 

  109. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276(24):21303–21310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Boulay G (2002) Ca(2+)-calmodulin regulates receptor-operated Ca(2+) entry activity of TRPC6 in HEK-293 cells. Cell Calcium 32(4):201–207

    Article  CAS  PubMed  Google Scholar 

  111. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279(18):18887–18894

    Article  CAS  PubMed  Google Scholar 

  112. Kini V, Chavez A, Mehta D (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285(43):33082–33091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280(36):32035–32047

    Article  CAS  PubMed  Google Scholar 

  114. Leclerc E, Heizmann CW (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci 3:1232–1262

    Google Scholar 

  115. Bily J, Grycova L, Holendova B, Jirku M, Janouskova H, Bousova K, Teisinger J (2013) Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS ONE 8(5), e62677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A 98(6):3168–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chevallet M, Jarvis L, Harel A, Luche S, Degot S, Chapuis V, Boulay G, Rabilloud T, Bouron A (2014) Functional consequences of the over-expression of TRPC6 channels in HEK cells: impact on the homeostasis of zinc. Metallomics 6(7):1269–1276

    Article  CAS  PubMed  Google Scholar 

  118. Carrasquillo R, Tian D, Krishna S, Pollak MR, Greka A, Schlondorff J (2012) SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity. BMC Cell Biol 13:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lussier MP, Lepage PK, Bousquet SM, Boulay G (2008) RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC. Cell Calcium 43(5):432–443

    Article  CAS  PubMed  Google Scholar 

  120. Goel M, Garcia R, Estacion M, Schilling WP (2001) Regulation of Drosophila TRPL channels by immunophilin FKBP59. J Biol Chem 276(42):38762–38773

    Article  CAS  PubMed  Google Scholar 

  121. Sinkins WG, Goel M, Estacion M, Schilling WP (2004) Association of immunophilins with mammalian TRPC channels. J Biol Chem 279(33):34521–34529

    Article  CAS  PubMed  Google Scholar 

  122. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37(7):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 35(10):1823–1830

    Article  CAS  PubMed  Google Scholar 

  125. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45(6):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brownlow SL, Sage SO (2005) Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 94(4):839–845

    PubMed  Google Scholar 

  127. Lei L, Lu S, Wang Y, Kim T, Mehta D, Wang Y (2014) The role of mechanical tension on lipid raft dependent PDGF-induced TRPC6 activation. Biomaterials 35(9):2868–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, Shirokova E, Krautwurst D, Harteneck C, Simons M, Pavenstadt H, Kerjaschki D, Thiele C, Walz G, Chalfie M, Benzing T (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103(46):17079–17086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. den Dekker E, Molin DG, Breikers G, van Oerle R, Akkerman JW, van Eys GJ, Heemskerk JW (2001) Expression of transient receptor potential mRNA isoforms and Ca(2+) influx in differentiating human stem cells and platelets. Biochim Biophys Acta 1539(3):243–255

    Article  Google Scholar 

  130. Madan E, Gogna R, Keppler B, Pati U (2013) p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ3-treated cancer cells. PLoS ONE 8(8), e71016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70(1):418–427

    Article  CAS  PubMed  Google Scholar 

  132. Sun YH, Li YQ, Feng SL, Li BX, Pan ZW, Xu CQ, Li TT, Yang BF (2010) Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes. Biochem Biophys Res Commun 394(4):955–961

    Article  CAS  PubMed  Google Scholar 

  133. Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95(5):496–505

    Article  CAS  PubMed  Google Scholar 

  134. Ding F, Zhang X, Li X, Zhang Y, Li B, Ding J (2014) Mammalian target of rapamycin complex 2 signaling pathway regulates transient receptor potential cation channel 6 in podocytes. PLoS ONE 9(11), e112972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Vollenbroker B, George B, Wolfgart M, Saleem MA, Pavenstadt H, Weide T (2009) mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 296(2):F418–F426

    Article  PubMed  CAS  Google Scholar 

  136. Gibon J, Deloulme JC, Chevallier T, Ladeveze E, Abrous DN, Bouron A (2013) The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int J Neuropsychopharmacol 16(1):189–198

    Article  CAS  PubMed  Google Scholar 

  137. Lu W, Ran P, Zhang D, Lai N, Zhong N, Wang J (2010) Bone morphogenetic protein 4 enhances canonical transient receptor potential expression, store-operated Ca2+ entry, and basal [Ca2+]i in rat distal pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 299(6):C1370–C1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang Y, Ding M, Chaudhari S, Ding Y, Yuan J, Stankowska D, He S, Krishnamoorthy R, Cunningham JT, Ma R (2013) Nuclear factor kappaB mediates suppression of canonical transient receptor potential 6 expression by reactive oxygen species and protein kinase C in kidney cells. J Biol Chem 288(18):12852–12865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Beck B, Zholos A, Sydorenko V, Roudbaraki M, Lehen’kyi V, Bordat P, Prevarskaya N, Skryma R (2006) TRPC7 is a receptor-operated DAG-activated channel in human keratinocytes. J Invest Dermatol 126(9):1982–1993

    Article  CAS  PubMed  Google Scholar 

  140. Cai S, Fatherazi S, Presland RB, Belton CM, Izutsu KT (2005) TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes. J Dermatol Sci 40(1):21–28

    Article  CAS  PubMed  Google Scholar 

  141. Graham S, Ding M, Sours-Brothers S, Yorio T, Ma JX, Ma R (2007) Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. Am J Physiol Renal Physiol 293(4):F1381–F1390

    Article  CAS  PubMed  Google Scholar 

  142. Liu D, Maier A, Scholze A, Rauch U, Boltzen U, Zhao Z, Zhu Z, Tepel M (2008) High glucose enhances transient receptor potential channel canonical type 6-dependent calcium influx in human platelets via phosphatidylinositol 3-kinase-dependent pathway. Arterioscler Thromb Vasc Biol 28(4):746–751

    Article  PubMed  CAS  Google Scholar 

  143. Han H, Wang Y, Li X, Wang PA, Wei X, Liang W, Ding G, Yu X, Bao C, Zhang Y, Wang Z, Yi F (2013) Novel role of NOD2 in mediating Ca2+ signaling: evidence from NOD2-regulated podocyte TRPC6 channels in hyperhomocysteinemia. Hypertension 62(3):506–511

    Article  CAS  PubMed  Google Scholar 

  144. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116(12):3114–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schlondorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296(3):C558–C569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nijenhuis T, Sloan AJ, Hoenderop JG, Flesche J, van Goor H, Kistler AD, Bakker M, Bindels RJ, de Boer RA, Moller CC, Hamming I, Navis G, Wetzels JF, Berden JH, Reiser J, Faul C, van der Vlag J (2011) Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. Am J Pathol 179(4):1719–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mwanjewe J, Grover AK (2004) Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells. Biochem J 378(Pt 3):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gibon J, Tu P, Bohic S, Richaud P, Arnaud J, Zhu M, Boulay G, Bouron A (2011) The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular accumulation of zinc. Biochim Biophys Acta 1808(12):2807–2818

    Article  CAS  PubMed  Google Scholar 

  149. Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278(48):47842–47852

    Article  CAS  PubMed  Google Scholar 

  150. Lemos VS, Poburko D, Liao CH, Cole WC, van Breemen C (2007) Na+ entry via TRPC6 causes Ca2+ entry via NCX reversal in ATP stimulated smooth muscle cells. Biochem Biophys Res Commun 352(1):130–134

    Article  CAS  PubMed  Google Scholar 

  151. Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C (2007) Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101(10):1030–1038

    Article  CAS  PubMed  Google Scholar 

  152. Syyong HT, Poburko D, Fameli N, van Breemen C (2007) ATP promotes NCX-reversal in aortic smooth muscle cells by DAG-activated Na+ entry. Biochem Biophys Res Commun 357(4):1177–1182

    Article  CAS  PubMed  Google Scholar 

  153. Tu P, Kunert-Keil C, Lucke S, Brinkmeier H, Bouron A (2009) Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J Neurochem 108(1):126–138

    Article  CAS  PubMed  Google Scholar 

  154. Louhivuori LM, Jansson L, Nordstrom T, Bart G, Nasman J, Akerman KE (2010) Selective interference with TRPC3/6 channels disrupts OX1 receptor signalling via NCX and reveals a distinct calcium influx pathway. Cell Calcium 48(2–3):114–123

    Article  CAS  PubMed  Google Scholar 

  155. Meng K, Xu J, Zhang C, Zhang R, Yang H, Liao C, Jiao J (2014) Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS ONE 9(6), e98777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103(2):335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. McMeekin SR, Dransfield I, Rossi AG, Haslett C, Walker TR (2006) E-selectin permits communication between PAF receptors and TRPC channels in human neutrophils. Blood 107(12):4938–4945

    Article  CAS  PubMed  Google Scholar 

  158. Bousquet SM, Monet M, Boulay G (2010) Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J Biol Chem 285:40534–40543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci U S A 101(8):2625–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586(Pt 17):4209–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chiluiza D, Krishna S, Schumacher VA, Schlondorff J (2013) Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signal-regulated kinases 1/2 (ERK1/2). J Biol Chem 288(25):18407–18420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Horinouchi T, Higa T, Aoyagi H, Nishiya T, Terada K, Miwa S (2012) Adenylate cyclase/cAMP/protein kinase A signaling pathway inhibits endothelin type A receptor-operated Ca(2)(+) entry mediated via transient receptor potential canonical 6 channels. J Pharmacol Exp Ther 340(1):143–151

    Article  CAS  PubMed  Google Scholar 

  163. Shen B, Kwan HY, Ma X, Wong CO, Du J, Huang Y, Yao X (2011) cAMP activates TRPC6 channels via the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)-mitogen-activated protein kinase kinase (MEK)-ERK1/2 signaling pathway. J Biol Chem 286(22):19439–19445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shi J, Takahashi S, Jin XH, Li YQ, Ito Y, Mori Y, Inoue R (2007) Myosin light chain kinase-independent inhibition by ML-9 of murine TRPC6 channels expressed in HEK293 cells. Br J Pharmacol 152:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Song X, Liu BC, Lu XY, Yang LL, Zhai YJ, Eaton AF, Thai TL, Eaton DC, Ma HP, Shen BZ (2014) Lovastatin inhibits human B lymphoma cell proliferation by reducing intracellular ROS and TRPC6 expression. Biochim Biophys Acta 1843(5):894–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedeberg’s Arch Pharmacol 370(4):227–237

    Article  CAS  Google Scholar 

  167. Harteneck C, Klose C, Krautwurst D (2011) Synthetic modulators of TRP channel activity. Adv Exp Med Biol 704:87–106

    Article  CAS  PubMed  Google Scholar 

  168. Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jiang L, Ding J, Tsai H, Li L, Feng Q, Miao J, Fan Q (2011) Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp Biol Med (Maywood) 236(2):184–193

    Article  CAS  Google Scholar 

  170. Kassouf N, Ambily A, Watson S, Hassock S, Authi HS, Srivastava S, Watson SP, Authi KS (2015) Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca elevation and Akt phosphorylation to constitute a major mechanism of thromboxane A formation in human platelets. Cell Signal 27(7):1488–1498

    Article  CAS  PubMed  Google Scholar 

  171. Krautwurst D, Hescheler J, Arndts D, Losel W, Hammer R, Schultz G (1993) Novel potent inhibitor of receptor-activated nonselective cation currents in HL-60 cells. Mol Pharmacol 43(5):655–659

    CAS  PubMed  Google Scholar 

  172. Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25(16):6980–6989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Woelfle U, Laszczyk MN, Kraus M, Leuner K, Kersten A, Simon-Haarhaus B, Scheffler A, Martin SF, Muller WE, Nashan D, Schempp CM (2010) Triterpenes promote keratinocyte differentiation in vitro, ex vivo and in vivo: a role for the transient receptor potential canonical (subtype) 6. J Invest Dermatol 130(1):113–123

    Article  CAS  PubMed  Google Scholar 

  174. Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23(4):705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen J, Luan Y, Yu R, Zhang Z, Zhang J, Wang W (2014) Transient receptor potential (TRP) channels, promising potential diagnostic and therapeutic tools for cancer. Biosci Trends 8(1):1–10

    Article  PubMed  CAS  Google Scholar 

  176. Buess M, Engler O, Hirsch HH, Moroni C (1999) Search for oncogenic regulators in an autocrine tumor model using differential display PCR: identification of novel candidate genes including the calcium channel mtrp6. Oncogene 18(7):1487–1494

    Article  CAS  PubMed  Google Scholar 

  177. Ge R, Tai Y, Sun Y, Zhou K, Yang S, Cheng T, Zou Q, Shen F, Wang Y (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283(1):43–51

    Article  CAS  PubMed  Google Scholar 

  178. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282(11):7833–7843

    Article  CAS  PubMed  Google Scholar 

  179. Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstadt H, Hsu HH, Schlondorff J, Ramos A, Greka A (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3(145):ra77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol 195(1):3–11

    Article  CAS  Google Scholar 

  181. Lindemann O, Umlauf D, Frank S, Schimmelpfennig S, Bertrand J, Pap T, Hanley PJ, Fabian A, Dietrich A, Schwab A (2013) TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J Immunol 190(11):5496–5505

    Article  CAS  PubMed  Google Scholar 

  182. Millholland MG, Mishra S, Dupont CD, Love MS, Patel B, Shilling D, Kazanietz MG, Foskett JK, Hunter CA, Sinnis P, Greenbaum DC (2013) A host GPCR signaling network required for the cytolysis of infected cells facilitates release of apicomplexan parasites. Cell Host Microbe 13(1):15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sel S, Rost BR, Yildirim AO, Sel B, Kalwa H, Fehrenbach H, Renz H, Gudermann T, Dietrich A (2008) Loss of classical transient receptor potential 6 channel reduces allergic airway response. Clin Exp Allergy 38(9):1548–1558

    Article  CAS  PubMed  Google Scholar 

  184. Finney-Hayward TK, Popa MO, Bahra P, Li S, Poll CT, Gosling M, Nicholson AG, Russell RE, Kon OM, Jarai G, Westwick J, Barnes PJ, Donnelly LE (2010) Expression of transient receptor potential C6 channels in human lung macrophages. Am J Respir Cell Mol Biol 43(3):296–304

    Article  CAS  PubMed  Google Scholar 

  185. Foller M, Kasinathan RS, Koka S, Lang C, Shumilina E, Birnbaumer L, Lang F, Huber SM (2008) TRPC6 contributes to the Ca(2+) leak of human erythrocytes. Cell Physiol Biochem 21(1–3):183–192

    PubMed  Google Scholar 

  186. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308(5729):1801–1804

    Article  CAS  PubMed  Google Scholar 

  187. Winn MP, Conlon PJ, Lynn KL, Howell DN, Slotterbeck BD, Smith AH, Graham FL, Bembe M, Quarles LD, Pericak-Vance MA, Vance JM (1999) Linkage of a gene causing familial focal segmental glomerulosclerosis to chromosome 11 and further evidence of genetic heterogeneity. Genomics 58(2):113–120

    Article  CAS  PubMed  Google Scholar 

  188. Santin S, Ars E, Rossetti S, Salido E, Silva I, Garcia-Maset R, Gimenez I, Ruiz P, Mendizabal S, Luciano Nieto J, Pena A, Camacho JA, Fraga G, Cobo MA, Bernis C, Ortiz A, de Pablos AL, Sanchez-Moreno A, Pintos G, Mirapeix E, Fernandez-Llama P, Ballarin J, Torra R, Group FS, Zamora I, Lopez-Hellin J, Madrid A, Ventura C, Vilalta R, Espinosa L, Garcia C, Melgosa M, Navarro M, Gimenez A, Cots JV, Alexandra S, Caramelo C, Egido J, San Jose MD, de la Cerda F, Sala P, Raspall F, Vila A, Daza AM, Vazquez M, Ecija JL, Espinosa M, Justa ML, Poveda R, Aparicio C, Rosell J, Muley R, Montenegro J, Gonzalez D, Hidalgo E, de Frutos DB, Trillo E, Gracia S, de los Rios FJ (2009) TRPC6 mutational analysis in a large cohort of patients with focal segmental glomerulosclerosis. Nephrol Dial Transplant 24(10):3089–3096

    Article  CAS  PubMed  Google Scholar 

  189. Gigante M, Caridi G, Montemurno E, Soccio M, d’Apolito M, Cerullo G, Aucella F, Schirinzi A, Emma F, Massella L, Messina G, De Palo T, Ranieri E, Ghiggeri GM, Gesualdo L (2011) TRPC6 mutations in children with steroid-resistant nephrotic syndrome and atypical phenotype. Clin J Am Soc Nephrol 6(7):1626–1634

    Article  CAS  PubMed  Google Scholar 

  190. Buscher AK, Konrad M, Nagel M, Witzke O, Kribben A, Hoyer PF, Weber S (2012) Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin Nephrol 78(1):47–53

    Article  PubMed  CAS  Google Scholar 

  191. Mir S, Yavascan O, Berdeli A, Sozeri B (2012) TRPC6 gene variants in Turkish children with steroid-resistant nephrotic syndrome. Nephrol Dial Transplant 27(1):205–209

    Article  CAS  PubMed  Google Scholar 

  192. Mottl AK, Lu M, Fine CA, Weck KE (2013) A novel TRPC6 mutation in a family with podocytopathy and clinical variability. BMC Nephrol 14:104

    Article  PubMed  PubMed Central  Google Scholar 

  193. Hofstra JM, Lainez S, van Kuijk WH, Schoots J, Baltissen MP, Hoefsloot LH, Knoers NV, Berden JH, Bindels RJ, van der Vlag J, Hoenderop JG, Wetzels JF, Nijenhuis T (2013) New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis. Nephrol Dial Transplant 28(7):1830–1838

    Article  CAS  PubMed  Google Scholar 

  194. Zhu B, Chen N, Wang ZH, Pan XX, Ren H, Zhang W, Wang WM (2009) Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 664(1–2):84–90

    Article  CAS  PubMed  Google Scholar 

  195. Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F (2009) A novel TRPC6 mutation that causes childhood FSGS. PLoS ONE 4(11), e7771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Moller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18(1):29–36

    Article  CAS  PubMed  Google Scholar 

  197. Krall P, Canales CP, Kairath P, Carmona-Mora P, Molina J, Carpio JD, Ruiz P, Mezzano SA, Li J, Wei C, Reiser J, Young JI, Walz K (2010) Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PLoS ONE 5(9), e12859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Kistler AD, Singh G, Altintas MM, Yu H, Fernandez IC, Gu C, Wilson C, Srivastava SK, Dietrich A, Walz K, Kerjaschki D, Ruiz P, Dryer S, Sever S, Dinda AK, Faul C, Reiser J (2013) Transient receptor potential channel 6 (TRPC6) protects podocytes during complement-mediated glomerular disease. J Biol Chem 288(51):36598–36609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kim EY, Anderson M, Wilson C, Hagmann H, Benzing T, Dryer SE (2013) NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex. Am J Physiol Cell Physiol 305(9):C960–C971

    Article  CAS  PubMed  Google Scholar 

  200. Orci L, Singh A, Amherdt M, Brown D, Perrelet A (1981) Microheterogeneity of protein and sterol content in kidney podocyte membrane. Nature 293(5834):646–647

    Article  CAS  PubMed  Google Scholar 

  201. Dryer SE, Reiser J (2010) TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299(4):F689–F701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ilatovskaya DV, Palygin O, Chubinskiy-Nadezhdin V, Negulyaev YA, Ma R, Birnbaumer L, Staruschenko A (2014) Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney Int 86(3):506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Liu BC, Song X, Lu XY, Li DT, Eaton DC, Shen BZ, Li XQ, Ma HP (2013) High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochim Biophys Acta 1833(6):1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Thilo F, Liu Y, Loddenkemper C, Schuelein R, Schmidt A, Yan Z, Zhu Z, Zakrzewicz A, Gollasch M, Tepel M (2012) VEGF regulates TRPC6 channels in podocytes. Nephrol Dial Transplant 27(3):921–929

    Article  CAS  PubMed  Google Scholar 

  205. Sonneveld R, Ferre S, Hoenderop JG, Dijkman HB, Berden JH, Bindels RJ, Wetzels JF, van der Vlag J, Nijenhuis T (2013) Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am J Pathol 182(4):1196–1204

    Article  CAS  PubMed  Google Scholar 

  206. Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schulein R, Jensen BL, Loddenkemper C, Jankowski V, Marcussen N, Gollasch M, Arendshorst WJ, Tepel M (2012) The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol 32(2):378–385

    Article  PubMed  CAS  Google Scholar 

  207. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24(4):349–354

    Article  CAS  PubMed  Google Scholar 

  208. Sun L, Li W, Li W, Xiong L, Li G, Ma R (2014) Astragaloside IV prevents damage to human mesangial cells through the inhibition of the NADPH oxidase/ROS/Akt/NFkappaB pathway under high glucose conditions. Int J Mol Med 34(1):167–176

    CAS  PubMed  Google Scholar 

  209. Sonneveld R, van der Vlag J, Baltissen MP, Verkaart SA, Wetzels JF, Berden JH, Hoenderop JG, Nijenhuis T (2014) Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 184(6):1715–1726

    Article  CAS  PubMed  Google Scholar 

  210. Kriz W, Elger M, Mundel P, Lemley KV (1995) Structure-stabilizing forces in the glomerular tuft. J Am Soc Nephrol 5(10):1731–1739

    CAS  PubMed  Google Scholar 

  211. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307

    Article  CAS  PubMed  Google Scholar 

  212. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H (1999) Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 10(12):2569–2576

    CAS  PubMed  Google Scholar 

  213. Deen WM, Maddox DA, Robertson CR, Brenner BM (1974) Dynamics of glomerular ultrafiltration in the rat.VII. Response to reduced renal mass. Am J Physiol 227(3):556–562

    CAS  PubMed  Google Scholar 

  214. Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, Wu G, Bowling B, Byrd A, Hall G, Sparks M, Zhang ZS, Homstad A, Barisoni L, Birbaumer L, Rosenberg P, Winn MP (2011) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22(3):526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lapatsina L, Brand J, Poole K, Daumke O, Lewin GR (2012) Stomatin-domain proteins. Eur J Cell Biol 91(4):240–245

    Article  CAS  PubMed  Google Scholar 

  216. Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR (2013) Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 591(Pt 22):5555–5574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wetzel C, Hu J, Riethmacher D, Benckendorff A, Harder L, Eilers A, Moshourab R, Kozlenkov A, Labuz D, Caspani O, Erdmann B, Machelska H, Heppenstall PA, Lewin GR (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445(7124):206–209

    Article  CAS  PubMed  Google Scholar 

  218. Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415(6875):1039–1042

    Article  CAS  PubMed  Google Scholar 

  219. Falkenberg CV, Blinov ML, Loew LM (2013) Pleomorphic ensembles: formation of large clusters composed of weakly interacting multivalent molecules. Biophys J 105(11):2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu XL, Kilpelainen P, Hellman U, Sun Y, Wartiovaara J, Morgunova E, Pikkarainen T, Yan K, Jonsson AP, Tryggvason K (2005) Characterization of the interactions of the nephrin intracellular domain. FEBS J 272(1):228–243

    Article  CAS  PubMed  Google Scholar 

  221. Yu L, Lin Q, Liao H, Feng J, Dong X, Ye J (2010) TGF-beta1 induces podocyte injury through Smad3-ERK-NF-kappaB pathway and Fyn-dependent TRPC6 phosphorylation. Cell Physiol Biochem 26(6):869–878

    Article  CAS  PubMed  Google Scholar 

  222. Jardin I, Redondo PC, Salido GM, Rosado JA (2008) Phosphatidylinositol 4,5-bisphosphate enhances store-operated calcium entry through hTRPC6 channel in human platelets. Biochim Biophys Acta 1783(1):84–97

    Article  CAS  PubMed  Google Scholar 

  223. Carter RN, Tolhurst G, Walmsley G, Vizuete-Forster M, Miller N, Mahaut-Smith MP (2006) Molecular and electrophysiological characterization of transient receptor potential ion channels in the primary murine megakaryocyte. J Physiol 576(Pt 1):151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tolhurst G, Carter RN, Amisten S, Holdich JP, Erlinge D, Mahaut-Smith MP (2008) Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 19(4):308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Harper MT, Sage SO (2010) Src family tyrosine kinases activate thrombin-induced non-capacitative cation entry in human platelets. Platelets 21(6):445–450

    Article  CAS  PubMed  Google Scholar 

  226. Redondo PC, Jardin I, Lopez JJ, Salido GM, Rosado JA (2008) Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochim Biophys Acta 1783(6):1163–1176

    Article  CAS  PubMed  Google Scholar 

  227. Chen W, Thielmann I, Gupta S, Subramanian H, Stegner D, van Kruchten R, Dietrich A, Gambaryan S, Heemskerk JW, Hermanns HM, Nieswandt B, Braun A (2014) Orai1-induced store-operated Ca(2+) entry enhances phospholipase activity and modulates canonical transient receptor potential channel 6 function in murine platelets. J Thromb Haemost 12(4):528–539

    Article  CAS  PubMed  Google Scholar 

  228. Dionisio N, Albarran L, Berna-Erro A, Hernandez-Cruz JM, Salido GM, Rosado JA (2011) Functional role of the calmodulin- and inositol 1,4,5-trisphosphate receptor-binding (CIRB) site of TRPC6 in human platelet activation. Cell Signal 23(11):1850–1856

    Article  CAS  PubMed  Google Scholar 

  229. Berna-Erro A, Albarran L, Dionisio N, Redondo PC, Alonso N, Gomez LJ, Salido GM, Rosado JA (2014) The canonical transient receptor potential 6 (TRPC6) channel is sensitive to extracellular pH in mouse platelets. Blood Cells Mol Dis 52(2–3):108–115

    Article  CAS  PubMed  Google Scholar 

  230. Voets T, Nilius B (2007) Modulation of TRPs by PIPs. J Physiol 582(Pt 3):939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25(3):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sage SO, Merritt JE, Hallam TJ, Rink TJ (1989) Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J 258(3):923–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  CAS  PubMed  Google Scholar 

  234. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437(7060):902–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci U S A 103(45):16704–16709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  238. Zbidi H, Jardin I, Woodard GE, Lopez JJ, Berna-Erro A, Salido GM, Rosado JA (2011) STIM1 and STIM2 are located in the acidic Ca2+ stores and associates with Orai1 upon depletion of the acidic stores in human platelets. J Biol Chem 286(14):12257–12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  240. Cheng KT, Ong HL, Liu X, Ambudkar IS (2013) Contribution and regulation of TRPC channels in store-operated Ca2+ entry. Curr Top Membr 71:149–179

    Article  CAS  PubMed  Google Scholar 

  241. Dionisio N, Redondo PC, Jardin I, Rosado JA (2012) Transient receptor potential channels in human platelets: expression and functional role. Curr Mol Med 12(10):1319–1328

    Article  CAS  PubMed  Google Scholar 

  242. Salido GM, Sage SO, Rosado JA (2009) Biochemical and functional properties of the store-operated Ca2+ channels. Cell Signal 21(4):457–461

    Article  CAS  PubMed  Google Scholar 

  243. Cheng KT, Ong HL, Liu X, Ambudkar IS (2011) Contribution of TRPC1 and Orai1 to Ca(2+) entry activated by store depletion. Adv Exp Med Biol 704:435–449

    Article  CAS  PubMed  Google Scholar 

  244. Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25(1):61–75

    Article  CAS  PubMed  Google Scholar 

  245. Lopez JJ, Salido G, Rosado JA (2012) SOCE and Ca2+ handling in platelet dysfunction. In: Groschner K, Graier WF, Romanin C (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, New York, pp 377–396

    Chapter  Google Scholar 

  246. Paez Espinosa EV, Murad JP, Ting HJ, Khasawneh FT (2012) Mouse transient receptor potential channel 6: role in hemostasis and thrombogenesis. Biochem Biophys Res Commun 417(2):853–856

    Article  CAS  PubMed  Google Scholar 

  247. Harper MT, Londono JE, Quick K, Londono JC, Flockerzi V, Philipp SE, Birnbaumer L, Freichel M, Poole AW (2013) Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure. Sci Signal 6(281):ra50

    Article  PubMed  CAS  Google Scholar 

  248. Albarran L, Berna-Erro A, Dionisio N, Redondo PC, Lopez E, Lopez JJ, Salido GM, Brull Sabate JM, Rosado JA (2014) TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. Biochim Biophys Acta 1843(4):789–796

    Article  CAS  PubMed  Google Scholar 

  249. Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL (2001) Platelet dysfunction in type 2 diabetes. Diabetes Care 24(8):1476–1485

    Article  CAS  PubMed  Google Scholar 

  250. Rosado JA, Saavedra FR, Redondo PC, Hernandez-Cruz JM, Salido GM, Pariente JA (2004) Reduced plasma membrane Ca2+-ATPase function in platelets from patients with non-insulin-dependent diabetes mellitus. Haematologica 89(9):1142–1144

    CAS  PubMed  Google Scholar 

  251. Leoncini G, Signorello MG, Piana A, Carrubba M, Armani U (1997) Hyperactivity and increased hydrogen peroxide formation in platelets of NIDDM patients. Thromb Res 86(2):153–160

    Article  CAS  PubMed  Google Scholar 

  252. Bose R, Li Y, Woo V (2001) Sodium-calcium exchange in platelets of diabetics. Proc West Pharmacol Soc 44:183–184

    CAS  PubMed  Google Scholar 

  253. Saavedra FR, Redondo PC, Hernandez-Cruz JM, Salido GM, Pariente JA, Rosado JA (2004) Store-operated Ca2+ entry and tyrosine kinase pp60src hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch Biochem Biophys 432(2):261–268

    Article  CAS  PubMed  Google Scholar 

  254. Redondo PC, Jardin I, Hernandez-Cruz JM, Pariente JA, Salido GM, Rosado JA (2005) Hydrogen peroxide and peroxynitrite enhance Ca2+ mobilization and aggregation in platelets from type 2 diabetic patients. Biochem Biophys Res Commun 333(3):794–802

    Article  CAS  PubMed  Google Scholar 

  255. Jardin I, Redondo PC, Salido GM, Pariente JA, Rosado JA (2006) Endogenously generated reactive oxygen species reduce PMCA activity in platelets from patients with non-insulin-dependent diabetes mellitus. Platelets 17(5):283–288

    Article  CAS  PubMed  Google Scholar 

  256. Zbidi H, Lopez JJ, Amor NB, Bartegi A, Salido GM, Rosado JA (2009) Enhanced expression of STIM1/Orai1 and TRPC3 in platelets from patients with type 2 diabetes mellitus. Blood Cells Mol Dis 43(2):211–213

    Article  CAS  PubMed  Google Scholar 

  257. Jardin I, Lopez JJ, Zbidi H, Bartegi A, Salido GM, Rosado JA (2011) Attenuated store-operated divalent cation entry and association between STIM1, Orai1, hTRPC1 and hTRPC6 in platelets from type 2 diabetic patients. Blood Cells Mol Dis 46(3):252–260

    Article  CAS  PubMed  Google Scholar 

  258. Garcia RL, Schilling WP (1997) Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem Biophys Res Commun 239(1):279–283

    Article  CAS  PubMed  Google Scholar 

  259. Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, Benham CD, Pangalos MN (2002) mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 109(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  260. Inada H, Iida T, Tominaga M (2006) Different expression patterns of TRP genes in murine B and T lymphocytes. Biochem Biophys Res Commun 350(3):762–767

    Article  CAS  PubMed  Google Scholar 

  261. Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM (2002) Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod 8(10):946–951

    Article  CAS  PubMed  Google Scholar 

  262. Guilbert A, Dhennin-Duthille I, Hiani YE, Haren N, Khorsi H, Sevestre H, Ahidouch A, Ouadid-Ahidouch H (2008) Expression of TRPC6 channels in human epithelial breast cancer cells. BMC Cancer 8:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, Zitt C, Luckhoff A (2003) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J 371(Pt 3):1045–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Foster RR, Welsh GI, Satchell SC, Marlow RD, Wherlock MD, Pons D, Mathieson PW, Bates DO, Saleem MA (2010) Functional distinctions in cytosolic calcium regulation between cells of the glomerular filtration barrier. Cell Calcium 48(1):44–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, Benedetti A (2002) Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem J 364(Pt 1):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Roedding AS, Li PP, Warsh JJ (2006) Characterization of the transient receptor potential channels mediating lysophosphatidic acid-stimulated calcium mobilization in B lymphoblasts. Life Sci 80(2):89–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CNRS, l’Agence Nationale de la Recherche (ANR 13-NEUR-0003-02) and MINECO (Grant BFU2013-45564-C2-1-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Bouron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouron, A., Chauvet, S., Dryer, S., Rosado, J.A. (2016). Second Messenger-Operated Calcium Entry Through TRPC6. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_10

Download citation

Publish with us

Policies and ethics