Skip to main content

Home Energy Management Systems: A Review of Modelling and Complexity

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 33))

Abstract

Innovations in the residential sector are required to reduce environmental impacts, as the sector is a contributor to greenhouse gas emissions. The increasing demand for electricity and the emergence of smart grids have presented new opportunities for home energy management systems (HEMS) in demand response markets. HEMS are demand response tools that shift and curtail demand to improve the energy consumption and production profile of a dwelling on behalf of a consumer. HEMS usually create optimal consumption and productions schedules by considering multiple objectives such as energy costs, environmental concerns, load profiles and consumer comfort. The existing literature has presented several methods, such as mathematical optimization, model predictive control and heuristic control, for creating efficient operation schedules and for making good consumption and production decisions. However, the effectiveness of the methods in the existing literature can be difficult to compare due to diversity in modelling parameters, such as appliance models, timing parameters and objectives. The present chapter provides a comparative analysis of the literature on HEMS, with a focus on modelling approaches and their impact on HEMS operations and outcomes. In particular, we discuss a set of HEMS challenges such as forecast uncertainty, modelling device heterogeneity, multi-objective scheduling, computational limitations, timing considerations and modelling consumer well-being. The presented work is organized to allow a reader to understand and compare the important considerations, approaches, nomenclature and results in prominent and new literary works without delving deeply into each one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bhattacharya K, Bollen M, Daalder J (2001) Operation of restructured power systems. Springer, New York

    Google Scholar 

  2. AESO (2009) Aeso long-term transmission system plan. Technical report, Alberta Electric System Operator

    Google Scholar 

  3. Ipakchi A, Albuyeh F (2009) Grid of the future. Power Energy Mag IEEE 7(2):52–62. ISSN:1540-7977. doi:10.1109/MPE.2008.931384

  4. Lui T, Stirling W, Marcy H (2010) Get smart. Power Energy Mag IEEE 8(3):66–78. ISSN:1540-7977. doi:10.1109/MPE.2010.936353

  5. Albadi M, El-Saadany E (2008) A summary of demand response in electricity markets. Electr Power Syst Res 78(11):1989–1996. ISSN:0378-7796. doi:10.1016/j.epsr.2008.04.002

  6. Wilkenfeld G (2006) Demand response: a national strategy to address air conditioner peak load. Sydney, Equipment Energy Efficiency Committee (E3), 50 p

    Google Scholar 

  7. Borenstein S, Jaske, M, Rosenfeld A (2002) Dynamic pricing, advanced metering and demand response in electricity markets. Technical report, University of California

    Google Scholar 

  8. Faruqui A, Sergici S (2007) Household response to dynamic pricing of electricity: a survey of seventeen pricing experiments 20(8):68–77

    Google Scholar 

  9. Pedrasa M, Spooner, T, MacGill I (2010) The value of accurate forecasts and a probabilistic method for robust scheduling of residential distributed energy resources. PMAPS 2010

    Google Scholar 

  10. Pedrasa M, Spooner T, MacGill I (2010) An energy service decision-support tool for optimal energy services acquisition. Technical report, University of New South Wales

    Google Scholar 

  11. Holland S, Mansur E (2005) Is real time pricing green? The environmental impacts of electricity demand variance. Rev Econ Stat

    Google Scholar 

  12. Mohsenian-Rad A, Leon-Garcia A (2010) Optimal residential load control with price prediction in real-time electricity pricing environments. IEEE Trans SmartGrid 1(2):120–133. ISSN:1949-3053. doi:10.1109/TSG.2010.2055903

  13. Haukeli IE (2011) Smart grid-the effect of increased demand elasticity at the system level. Master’s thesis, Norwegian School of Science and Technology

    Google Scholar 

  14. Beaudin M, Zareipour H, Schellenberg A (2012) Residential energy management using a moving window algorithm. In: Innovative smart grid technologies (ISGT)

    Google Scholar 

  15. Bozchalui MC, Hashmi, SA, Hassen H, Canizares CA, Bhattacharya K (2012) Optimal operation of residential energy hubs in smart grids. IEEE Trans Smart Grid 3(4):1755–1766. ISSN:1949-3053. doi:10.1109/TSG.2012.2212032

  16. Kailas A, Cecchi V, Mukherjee A (2012) A survey of communications and networking technologies for energy management in buildings and home automation. J Comput Netw Commun

    Google Scholar 

  17. Flick T, Morehouse J (2010) Securing the smart grid: next generation power grid security. Elsevier

    Google Scholar 

  18. Ancillotti E, Bruno R, Conti M (2013) The role of communication systems in smart grids: architectures, technical solutions and research challenges. Comput Commun 36(17–18):1665–1697. ISSN:0140-3664. doi:http://dx.doi.org/10.1016/j.comcom.2013.09.004

  19. Zhu Z, Lambotharan S, Chin WH Fan Z (2012) Overview of demand management in smart grid and enabling wireless communication technologies. IEEE Wirel Commun, 19(3):48–56. ISSN:1536-1284. doi:10.1109/MWC.2012.6231159

  20. Llaria A, Jiménez J, Curea O (2013) Study on communication technologies for the optimal operation of smart grids. Trans Emerg Telecommun Technol. ISSN:2161-3915. doi:10.1002/ett.2625. http://dx.doi.org/10.1002/ett.2625

  21. Fang X, Misra S, Xue G, Yang D (2012) Smart grid the new and improved power grid: a survey. Commun Surv Tutor IEEE, 14(4):944–980. ISSN:1553-877X. doi:10.1109/SURV.2011.101911.00087

  22. Kosek AM, Costanzo GT, Bindner HW, Gehrke O (2013) An overview of demand side management control schemes for buildings in smart grids. In: 2013 IEEE international conference on smart energy grid engineering (SEGE), pp 1–9. doi:10.1109/SEGE.2013.6707934

  23. Siano P (2014) Demand response and smart grids a survey. Renew Sustain Energy Rev 30:461–478. ISSN:1364-0321. doi:http://dx.doi.org/10.1016/j.rser.2013.10.022

  24. Venter G (2010) Review of optimization techniques. Wiley. ISBN:9780470686652. doi:10.1002/9780470686652.eae495

  25. Tamaki H, Kita H, Kobayashi S (1996) Multi-objective optimization by genetic algorithms: a review. In: Proceedings of IEEE international conference on evolutionary computation, 1996, pp 517–522. doi:10.1109/ICEC.1996.542653

  26. Albers S (2003) Online algorithms: a survey. Math Program 97(1–2):3–26. ISSN:0025-5610. doi:10.1007/s10107-003-0436-0

  27. Marler R, Arora J (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6)

    Google Scholar 

  28. Engell S, Harjunkoski I (2012) Optimal operation: scheduling, advanced control and their integration. Comput Chem Eng 47:121–133. ISSN:0098-1354. doi:http://dx.doi.org/10.1016/j.compchemeng.2012.06.039. FOCAPO 2012

  29. Javaid N, Khan I, Ullah MN, Mahmood A, Farooq MU (2013) A survey of home energy management systems in future smart grid communications. In: 2013 eighth international conference on broadband and wireless computing, communication and applications (BWCCA), pp 459–464. doi:10.1109/BWCCA.2013.80

  30. Ullah MN, Mahmood A, Razzaq S, Ilahi M, Khan RD, Javaid N (2013) A survey of different residential energy consumption controlling techniques for autonomous DSM in future smart grid communications. CoRR, abs/1306.1134

    Google Scholar 

  31. NRC (2010) Survey of household energy use 2007. Technical report, Natural Resources Canada

    Google Scholar 

  32. Gottwalt S, Ketter W, Block C, Collins J, Weinhardt C (2011) Demand side management—simulation of household behavior under variable prices. Energy Policy 39(12):8163–8174. ISSN:0301-4215. doi:http://dx.doi.org/10.1016/j.enpol.2011.10.016.Clean. Cooking Fuels and Technologies in Developing Economies

  33. Paatero J, Lund P (2006) A model for generating household electricity load profiles. Int J Energy Res 30(5):273–290

    Article  Google Scholar 

  34. Barbato A, Capone A, Chen L, Martignon F, Paris S (2013) A power scheduling game for reducing the peak demand of residential users. In: Online conference on green communications (GreenCom), pp 137–142, IEEE. doi:10.1109/OnlineGreenCom.2013.6731042

  35. Boynuegri AR, Yagcitekin B, Baysal M, Karakas A, Uzunoglu M (2013) Energy management algorithm for smart home with renewable energy sources. In: 2013 fourth international conference on power engineering, energy and electrical drives (POW-ERENG), pp 1753–1758. doi:10.1109/PowerEng.2013.6635883

  36. Adika CO, Wang L (2014) Autonomous appliance scheduling for household energy management. IEEE Trans Smart Grid 5(2):673–682. ISSN:1949-3053. doi:10.1109/TSG.2013.2271427

  37. Adika CO, Wang L (2014) Smart charging and appliance scheduling approaches to demand side management. Int J Electr Power Energy Syst 57:232–240. ISSN:0142-0615. doi:http://dx.doi.org/10.1016/j.ijepes.2013.12.004

  38. Costanzo GT, Zhu G, Anjos MF, Savard G (2012) A system architecture for autonomous demand side load management in smart buildings. IEEE Trans Smart Grid 3(4):2157–2165. ISSN:1949-3053. doi:10.1109/TSG.2012.2217358

  39. Clastres C, Pham T, Wurtz F, Bacha S (2010) Ancillary services and optimal household energy management with photovoltaic production. Energy 35(1):55–64. ISSN:0360-5442. doi:10.1016/j.energy.2009.08.025

  40. Agnetis A, de Pascale G, Detti P, Vicino A (2013) Load scheduling for household energy consumption optimization. IEEE Trans Smart Grid 4(4):2364–2373. ISSN:1949-3053. doi:10.1109/TSG.2013.2254506

  41. Tsui KM, Chan SC (2012) Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans Smart Grid 3(4):1812–1821. ISSN:1949-3053. doi:10.1109/TSG.2012.2218835

  42. Sianaki O, Masoum M (2013) A multi-agent intelligent decision making support system for home energy management in smart grid: a fuzzy TOPSIS approach. Multiagent Grid Syst 9(3):181–195

    Article  Google Scholar 

  43. Mets K, Verschueren T, De Turck F, Develder C (2011) Exploiting V2G to optimize residential energy consumption with electrical vehicle (dis)charging. In: 2011 IEEE first international workshop on smart grid modeling and simulation (SGMS), pp 7–12. doi:10.1109/SGMS.2011.6089203

  44. Matallanas E, Castillo-Cagigal M, Gutierrez A, Monasterio-Huelin F, Caamano-Martin E, Masa D, Jiminez-Leube J (2012) Neural network controller for active demand-side management with PV energy in the residential sector. Appl Energy 91(1):90–97. ISSN:0306-2619. doi:http://dx.doi.org/10.1016/j.apenergy.2011.09.004

  45. Yao L, Chang W, Yen R (2005) An iterative deepening genetic algorithm for scheduling of direct load control. IEEE Trans Power Syst 20(3):1414–1421. ISSN:0885-8950. doi:10.1109/TPWRS.2005.852151

  46. Chen C, Wang J, Kishore S (2014) A distributed direct load control approach for large-scale residential demand response. ISSN:0885-8950

    Google Scholar 

  47. Molderink A, Bakker V, Hurink J, Smit G (2008) Algorithms for balancing demand-side load and micro-generation in islanded operation. In: 19th international conference on systems engineering, pp 115–120. doi:10.1109/ICSEng.2008.50

  48. Molderink A, Bakker V, Bosman M, Hurink J, Smit J (2009) Domestic Energy management methodology for optimizing efficiency in smart grids. In: IEEE conference on power technology

    Google Scholar 

  49. Edwards R, New J, Parker L (2012) Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build 49:591–603. ISSN:0378-7788. doi:10.1016/j.enbuild.2012.03.010

  50. Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Kallos G, Pytharoulis I (2008) Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J Wind Eng Ind Aerodyn 96(12):2348–2362. ISSN:0167-6105. doi:10.1016/j.jweia.2008.03.013

  51. Chen C, Duan S, Cai T, Liu B (2011) Online 24-h solar power forecasting based on weather type classification using artificial neural network. Sol Energy 85(11):2856–2870. ISSN:0038-092X. doi:10.1016/j.solener.2011.08.027

  52. Mellit A, Benghanem M, Kalogirou SA (2006) An adaptive wavelet-network model for forecasting daily total solar-radiation. Appl Energy, 83(7):705–722. ISSN:0306-2619. doi:10.1016/j.apenergy.2005.06.003

  53. Ilic D, da Silva PG, Karnouskos S, Jacobi M (2013) Impact assessment of smart meter grouping on the accuracy of fore-casting algorithms. In: Proceedings of the 28th annual ACM symposium on applied computing, SAC’13. ACM, New York, pp 673–679. ISBN:978-1-4503-1656-9. doi:10.1145/2480362.2480491

  54. Wilke U, Scartezzini J-L, Haldi F et al (2013) Probabilistic bottom-up modelling of occupancy and activities to predict electricity demand in residential buildings. PhD thesis, EPFL

    Google Scholar 

  55. Alvisi S, Franchini M, Marinelli A (2007) A short-term, pattern-based model for water-demand forecasting. J Hydroinformatics 9(1):39–50

    Article  Google Scholar 

  56. Das S, Cook D, Battacharya A, Heierman E, Lin T (2002) The role of prediction algorithms in the Mavhome smart home architecture. IEEE Wirel Commun 9(6):77–84. ISSN:1536-1284. doi:10.1109/MWC.2002.1160085

  57. Pedrasa M, Spooner T, MacGill I (2010) Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans Smart Grid 1(2):134–143. ISSN:1949-3053. doi:10.1109/TSG.2010.2053053

  58. Tiptipakorn S, Lee W (2007) A residential consumer-centered load control strategy in real-time electricity pricing environment. In: 2007 39th North American power symposium, pp 505–510. doi:10.1109/NAPS.2007.4402357

  59. Livengood D, Larson R (2009) The energy box: locally automated optimal control of residential electricity usage. Serv Sci 1:1–16

    Google Scholar 

  60. Lujano-Rojas JM, Monteiro C, Dufo-Lopez R, Bernal-Agustin JL (2012) Optimum residential load management strategy for real time pricing (RTP) demand response programs. Energy Policy 45:671–679. ISSN:0301-4215. doi:http://dx.doi.org/10.1016/j.enpol.2012.03.019

  61. Beaudin M, Kiani A, Zareipour H, Schellenberg A (2013) Residential energy management using a two-horizon algorithm. IEEE Trans Smart Grid

    Google Scholar 

  62. US Department of Energy (2008) The smart grid: an introduction. Technical report, US Department of Energy

    Google Scholar 

  63. Sou KC, Weimer J, Sandberg H, Johansson KH (2011) Scheduling smart home appliances using mixed integer linear programming. In: 2011 50th IEEE conference on decision and control and European control conference (CDC-ECC), pp 5144–5149. doi:10.1109/CDC.2011.6161081

  64. Petriu E, Georganas N, Petriu D, Makrakis D, Groza V (2000) Sensor-based information appliances. IEEE Instrum Meas Mag 3:31–35

    Article  Google Scholar 

  65. Stadler M, Krause W, Sonnenschein M, Vogel U (2009) Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environ Model Softw 24(2):285–295. ISSN:1364-8152. doi:10.1016/j.envsoft.2008.07.003

  66. Ning Lu, Chassin DP (2004) A state queueing model of thermostatically controlled appliances. In: Proceedings of IEEE PES power systems conference and exposition. doi:10.1109/PSCE.2004.1397437

  67. Mohsenian-Rad A, Wong V, Jatskevich J, Schober R, LeonGarcia A (2010) Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans Smart Grid 1(3):320–331. ISSN:1949-3053. doi:10.1109/TSG.2010.2089069

  68. Dehnad A, Shakouri H (2013) A novel model of intelligent electrical load management by goal programming for smart houses, respecting consumer preferences. Energy Power Eng 5(10):622–627

    Article  Google Scholar 

  69. Yu T, Kim D, Son S (2013) Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources. Int J Smart Home 7(4):261–271. ISSN:19754094

    Google Scholar 

  70. Zhu Z, Tang J, Lambotharan S, Chin WH, Fan Z (2012) An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES innovative smart grid technologies (ISGT), pp 1–5. doi:10.1109/ISGT.2012.6175785

  71. Hassan NU, Pasha MA, Yuen C, Huang S, Wang X (2013) Impact of scheduling flexibility on demand profile flatness and user inconvenience in residential smart grid system. Energies 6(12):6608–6635. ISSN:1996-1073. doi:10.3390/en6126608. http://www.mdpi.com/1996-1073/6/12/6608

  72. Samadi P, Mohsenian-Rad H, Wong VWS, Schober R (2013) Tackling the load uncertainty challenges for energy consumption scheduling in smart grid. IEEE Trans Smart Grid 4(2):1007–1016. ISSN:1949-3053. doi:10.1109/TSG.2012.2234769

  73. Koch S, Zima M, Andersson G (2009) Potentials and applications of coordinated groups of thermal household appliances for power system control purposes. In: 2009 IEEE PES/IAS conference on sustainable alternative energy (SAE), pp 1–8. doi:10.1109/SAE.2009.5534841

  74. Koch S, Meier D, Zima M, Wiederkehr M, Andersson G (2009) An active coordination approach for thermal household appliances; local communication and calculation tasks in the household. In: 2009 IEEE Bucharest PowerTech, pp 1–8. doi:10.1109/PTC.2009.5281787

  75. Koch S, Zima M, Andersson G. (2009) Active coordination of thermal household appliances for load management purposes. In: IFAC symposium on power plants and power systems control, Tampere, Finland. Citeseer

    Google Scholar 

  76. Li N, Chen L, Low SH (2011) Optimal demand response based on utility maximization in power networks. In: 2011 IEEE power and energy society general meeting, pp 1–8. doi:10.1109/PES.2011.6039082

  77. Ha D, Ploix S, Zamai E, Jacomino M (2006) Tabu search for the optimization of household energy consumption. In: 2006 IEEE international conference on information reuse and integration, pp 86–92. doi:10.1109/IRI.2006.252393

  78. Gatsis N, Giannakis GB (2012) Residential load control: distributed scheduling and convergence with lost AMI messages. IEEE Trans Smart Grid 3(2):770–786. ISSN:1949-3053. doi:10.1109/TSG.2011.2176518

  79. Laurent, J, Desaulniers G, Malhame R, Soumis F (1995) A column generation method for optimal load management via control of electric water heaters. IEEE Trans Power Syst 10(3):1389–1400. ISSN:0885-8950. doi:10.1109/59.466513

  80. Constantopoulos P, Schweppe F, Larson R (1991) ESTIA: a real-time consumer control scheme for space conditioning usage under spot electricity pricing. Comp Oper Res 18(8):751–765

    Article  Google Scholar 

  81. de Dear R, Brager G (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104:145–167. http://escholarship.org/uc/item/4qq2p9c6

  82. Toftum J, Jorgensen A, Fanger P (1998) Upper limits of air humidity for preventing warm respiratory discomfort. Energy Build 28(1):15–23. ISSN:0378-7788. doi:10.1016/S0378-7788(97)00018-2

  83. Zhao Z, Lee WC, Shin Y, Song K-B (2013) An optimal power scheduling method applied in home energy management system based on demand response. ETRI J 35(4):677–686. ISSN:12256463

    Google Scholar 

  84. Ilic M, Black J, Watz J (2002) Potential benefits of implementing load control. In: Power engineering society winter meeting, vol 1. IEEE, pp 177–182. doi:10.1109/PESW.2002.984981

  85. Yu Z, Jia L, Murphy-Hoye MC, Pratt A, Tong L (2013) Modeling and stochastic control for home energy management. IEEE Trans Smart Grid 4(4):2244–2255. ISSN:1949-3053. doi:10.1109/TSG.2013.2279171

  86. Huang T, Liu D (2013) A self-learning scheme for residential energy system control and management. Neural Comput Appl 22(2):259–269. ISSN:0941-0643. doi:10.1007/s00521-011-0711-6

  87. Salinas S, Li M, Li P (2013) Multi-objective optimal energy consumption scheduling in smart grids. IEEE Trans Smart Grid 4(1):341–348. ISSN:1949-3053. doi:10.1109/TSG.2012.2214068

  88. Mohsenian-Rad A, Wong V, Jatskevich J, Schober R (2010) Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In Innovative Smart Grid Technologies (ISGT), pp 1–6. doi:10.1109/ISGT.2010.5434752

  89. Lunden J, Werner S, Koivunen V (2013) Distributed demand-side optimization with load uncertainty. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 5229–5232. doi:10.1109/ICASSP.2013.6638660

  90. van den Boom TJJ, Backx TCPM (2010) Model predictive control. DutchInstitute of Systems and Control. Lecture Notes

    Google Scholar 

  91. Wang S, Watada J (2012) Fuzzy stochastic optimization: theory, models and applications. Springer

    Google Scholar 

  92. Kleywegt A, Shapiro A (2000) Stochastic optimization. Technical report, Georgia Institute of Technology

    Google Scholar 

  93. Rockafellar RT (2001) Optimization under uncertainty. Lecture Notes

    Google Scholar 

  94. Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1):1–13. ISSN:0167-6377. doi:http://dx.doi.org/10.1016/S0167-6377(99)00016-4

  95. Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1–3):49–71. ISSN:0025-5610. doi:10.1007/s10107-003-0396-4

  96. Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805. doi:10.1287/moor.23.4.769

    Article  MathSciNet  MATH  Google Scholar 

  97. Tarasak P (2011) Optimal real-time pricing under load uncertainty based on utility maximization for smart grid. In: 2011 IEEE international conference on smart grid communications (SmartGridComm), pp 321–326. doi:10.1109/SmartGridComm.2011.6102341

  98. Defourny B, Ernst D, Wehenkel L (2012) Multistage stochastic programming: a scenario tree based approach to planning under uncertainty. In: Decision theory models for applications in artificial intelligence: concepts and solutions, pp 97–143

    Google Scholar 

  99. Halman N, Klabjan D, Li C-L, Orlin J, David S-L (2008) Fully polynomial time approximation schemes for stochastic dynamic programs. In: Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms. Society for Industrial and Applied Mathematics, pp 700–709

    Google Scholar 

  100. Hong Y-Y, Lin J-K, Wu C-P, Chuang C-C (2012) Multi-objective air-conditioning control considering fuzzy parameters using immune clonal selection programming. IEEE Trans Smart Grid 3(4):1603–1610. ISSN:1949-3053. doi:10.1109/TSG.2012.2210059

  101. Liang H, Zhuang W (2014) Stochastic modeling and optimization in a microgrid: a survey. Energies 7(4):2027–2050. EISSN:1996-1073. doi:10.3390/en7042027

  102. Wang J, Kennedy S, Kirtley J (2010) A new wholesale bidding mechanism for enhanced demand response in smart grids. Innov Smart Grid Technol (ISGT) 2010:1–8. doi:10.1109/ISGT.2010.5434766

    Article  Google Scholar 

  103. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: Stability and optimality. Automatica 36(6):789–814. ISSN:0005-1098. doi:http://dx.doi.org/10.1016/S0005-1098(99)00214-9

  104. Kothare MV, Balakrishnan V, Morari M (1996) Robust constrained model predictive control using linear matrix inequalities. Automatica, 32(10):1361–1379. ISSN:0005-1098. doi:http://dx.doi.org/10.1016/0005-1098(96)00063-5

  105. Costanzo GT, Kheir J, Zhu G (2011) Peak-load shaving in smart homes via online scheduling. In: 2011 IEEE international symposium on industrial electronics (ISIE), pp 1347–1352. doi:10.1109/ISIE.2011.5984354

  106. Toronto Hydro (2014) Tou rates—toronto hydro

    Google Scholar 

  107. Bagge H, Johansson D (2011) Measurements of household electricity and domestic hot water use in dwellings and the effect of different monitoring time resolution. Energy 36(5):2943–2951. ISSN:0360-5442. doi:10.1016/j.energy.2011.02.037

  108. Molderink A, Bakker V, Bosman M, Hurink J, Smit G (2010) Management and control of domestic smart grid technology. IEEE Trans Smart Grid 1(2):109–119. ISSN:1949-3053. doi:10.1109/TSG.2010.2055904

  109. Conejo AJ, Morales JM, Baringo L (2010) Real-time demand response model. IEEE Trans Smart Grid 1(3):236–242. ISSN:1949-3053. doi:10.1109/TSG.2010.2078843

  110. Navid-Azarbaijani N (1995) Load model and control of residential appliances. PhD thesis, McGill University

    Google Scholar 

  111. Pham T, Clastres C, Wurtz F, Bacha S, Zamai E (2008) Optimal household energy management and economic analysis: from sizing to operation scheduling. Adv Appl Mech Eng Technol 1:35–68

    Google Scholar 

  112. Ha D, de Lamotte F, Huynh Q (2007) Real-time dynamic multi level optimization for demand-side load management. In: 2007 IEEE international conference on industrial engineering and engineering management, pp 945–949. doi:10.1109/IEEM.2007.4419331

  113. Jia L, Yu Z, Murphy-Hoye MC, Pratt A, Piccioli EG Tong L (2011) Multi-scale stochastic optimization for home energy management. In: 2011 4th IEEE international workshop on computational advances in multi-sensor adaptive processing (CAM-SAP), pp 113–116. doi:10.1109/CAMSAP.2011.6135900

  114. Kahrobaee S, Asgarpoor S, Qiao W (2013) Optimum sizing of distributed generation and storage capacity in smart households. IEEE Trans Smart Grid 4(4):1791–1801. ISSN:1949-3053. doi:10.1109/TSG.2013.2278783

  115. Yang H-T, Liao J-T, Lin C-I (2013) A load forecasting method for hems applications. In: 2013 IEEE grenoble PowerTech (POWERTECH), pp 1–6. doi:10.1109/PTC.2013.6652195

  116. Misra S, Mondal A, Banik S, Khatua M, Bera S, Obaidat MS (2013) Residential energy management in smart grid: a Markov decision process-based approach. In: IEEE international conference on Green Computing and Communications(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), and IEEE cyber, physical and social computing, pp 1152–1157. doi:10.1109/GreenCom-iThings-CPSCom.2013.200

  117. Rossello-Busquet A, Soler J, Dittmann L (2011) A novel home energy management system architecture. In: 2011 UkSim 13th international conference on computer modelling and simulation (UKSim), pp 387–392. doi:10.1109/UKSIM.2011.80

  118. Cook D, Youngblood M, Heierman E, Gopalratnam K, Rao S, Litvin A, Khawaja F (2003) Mavhome: an agent-based smart home. In: Proceedings of the first IEEE international conference on pervasive computing and communications, 2003 (PerCom 2003), pp 521–524

    Google Scholar 

  119. Lee JY, Choi SG (2014) Linear programming based hourly peak load shaving method at home area. In: 2014 16th international conference on advanced communication technology (ICACT), pp 310–313. doi:10.1109/ICACT.2014.6778971

  120. Lee J, Kim H-J, Park G-L, Kang M (2012) Energy consumption scheduler for demand response systems in the smart grid. J Inf Sci Eng 28(5):955–969. ISSN:10162364

    Google Scholar 

  121. Roe C, Meliopoulos S, Entriken R, Chhaya S (2011) Simulated demand response of a residential energy management system. In: 2011 IEEE energytech, pp 1–6. doi:10.1109/EnergyTech.2011.5948530

  122. Kim TT, Poor HV (2011) Scheduling power consumption with price uncertainty. IEEE Trans Smart Grid 2(3):519–527. ISSN:1949-3053. doi:10.1109/TSG.2011.2159279

  123. Chen Z, Wu L, Fu Y (2012) Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Trans Smart Grid 3(4):1822–1831. ISSN:1949-3053. doi:10.1109/TSG.2012.2212729

  124. Pedrasa M, Spooner T, MacGill I (2009) Scheduling of demand side resources using binary particle swarm optimization. IEEE Trans Power Syst 24(3):1173–1181. ISSN:0885-8950. doi:10.1109/TPWRS.2009.2021219

  125. Shao S, Zhang T, Pipattanasomporn M Rahman S (2010) Impact of TOU rates on distribution load shapes in a smart grid with PHEV penetration. In: 2010 IEEE PES transmission and distribution conference and exposition, pp 1–6. doi:10.1109/TDC.2010.5484336

  126. van Tonder J, Lane I (1996) A load model to support demand management decisions on domestic storage water heater control strategy. IEEE Trans Power Syst 11(4):1844–1849. ISSN:0885-8950. doi:10.1109/59.544652

  127. Bosman M, Bakker V, Molderink A, Hurink J, Smit G (2010) Scheduling microchps in a group of houses. Glob J Technol Optim 1:30–37

    Google Scholar 

  128. Bakker V, Molderink A, Hurink J, Smit G (2008) Domestic heat demand prediction using neural networks. In: 19th international conference on systems engineering, pp 189–194. doi:10.1109/ICSEng.2008.51

  129. NRC (2011) Energy use data handbook 1990–2008. Technical report, Natural Resources Canada

    Google Scholar 

  130. NRC (2009) Energy consumption of major household appliances shipped in Canada, summary report. Technical report M141-16/1-2007, Natural Resources Canada

    Google Scholar 

  131. EPA (2013)

    Google Scholar 

  132. Galus MD, Andersson G (2008) Demand management of grid connected plug-in hybrid electric vehicles (PHEV). In: Energy 2030 conference, 2008. ENERGY 2008. IEEE, pp 1–8. doi:10.1109/EN-ERGY.2008.4781014

  133. Da Silva PG, Ilic D, Karnouskos S (2014) The impact of smart grid prosumer grouping on forecasting accuracy and its benefits for local electricity market trading. IEEE Trans Smart Grid 5(1):402–410. ISSN:1949-3053. doi:10.1109/TSG.2013.2278868

  134. Yu Z, McLaughlin L, Jia L, Murphy-Hoye MC, Pratt A, Tong L (2012) Modeling and stochastic control for home energy management. In: Power and energy society general meeting, pp 1–9. IEEE. doi:10.1109/PESGM.2012.6345471

  135. Guan X, Xu Z, Jia Q (2010) Energy-efficient buildings facilitated by microgrid. IEEE Trans Smart Grid, 1(3):243–252. ISSN:1949-3053. doi:10.1109/TSG.2010.2083705

  136. Chen X, Wei T, Hu S (2013) Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home. IEEE Trans Smart Grid 4(2):932–941. ISSN:1949-3053. doi:10.1109/TSG.2012.2226065

  137. De Angelis F, Boaro M, Fuselli D, Squartini S, Piazza F, Wei Q (2013) Optimal home energy management under dynamic electrical and thermal constraints. IEEE Trans Ind Inform 9(3):1518–1527. ISSN:1551-3203. doi:10.1109/TII.2012.2230637

  138. Scott P, Thiebaux S, Briel M, Hentenryck P (2013) Residential demand response under uncertainty. In: Schulte C (ed) Principles and practice of constraint programming. Lecture Notes in Computer Science, vol 8124. Springer, Berlin, pp 645–660. ISBN:978-3-642-40626-3. doi:10.1007/978-3-642-40627-0_48

  139. Du P, Lu N (2011) Appliance commitment for household load scheduling. IEEE Trans Smart Grid 2(2):411–419. ISSN:1949-3053. doi:10.1109/TSG.2011.2140344

  140. Chen Z, Wu L (2013) Residential appliance DR energy management with electric privacy protection by online stochastic optimization. IEEE Trans Smart Grid, 4(4):1861–1869. ISSN:1949-3053. doi:10.1109/TSG.2013.2256803

  141. Liu P, Fu Y (2013) Optimal operation of energy-efficiency building: a robust optimization approach. In: 2013 IEEE power and energy society general meeting (PES), pp 1–5. doi:10.1109/PESMG.2013.6673050

  142. Mathieu JL, Gonzalez Vaya M, Andersson G (2013) Uncertainty in the flexibility of aggregations of demand response resources. In: 39th annual conference of the IEEE industrial electronics society, IECON 2013, pp 8052–8057. doi:10.1109/IECON.2013.6700479

  143. Moradzadeh B (2013) Optimal distribution reconfiguration and demand management within practical operational constraints. PhD thesis, University of Tennessee, Knoxville

    Google Scholar 

  144. Penya Y, Jennings N, Neumann G (2005) An optimal distributed constraint optimization algorithm for efficient energy management. In: International conference on computational intelligence for modelling, control and automation, 2005 and international conference on intelligent agents, web technologies and internet commerce, vol 2, pp 17–182. doi:10.1109/CIMCA.2005.1631464

Download references

Acknowledgments

The authors would like to thank Dr. Ana Nikolic for helping in the editing and proof-reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beaudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beaudin, M., Zareipour, H. (2017). Home Energy Management Systems: A Review of Modelling and Complexity. In: Zhang, X., Dincer, I. (eds) Energy Solutions to Combat Global Warming. Lecture Notes in Energy, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-26950-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26950-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26948-1

  • Online ISBN: 978-3-319-26950-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics