Human Chemosensory Communication

  • Bettina M. PauseEmail author
Part of the Springer Handbooks book series (SHB)


Social communication refers to a basic human need, and findings accumulate that show humans communicate numerous kinds of social information via chemosignals. Briefly, it will be introduced which chemicals are conveyed through body fluids and which sensory systems are considered to process social chemosignals. Then, it will be shown that pheromones in humans have not yet been discovered. Studies on putative pheromones in humans often are performed disregarding the biological underpinnings of chemical communication and seem randomly to investigate volatile substances without any theoretical background. However, evidence will be provided that human chemosensory communication has been well demonstrated, using natural body fluids (e. g., sweat) as the source of chemosignals. Humans can decode information about the immunogenetic profile and the level of sexual hormones from volatiles released from the sweat of other individuals. These chemical signals are considered to affect mate choice. However, the signal extraction also depends on the sexual orientation of the perceiver. Furthermore, the recognition of kin and mother-infant communication comprise the release and decoding of chemosignals. Both phenomena are important prerequisites for the formation of social bonding and harm protection. Finally, the communication of stress and anxiety in humans will be presented as an example of a chemical transmission of emotional states. At the end of the chapter it will be questioned whether chemosensory communication is a skill, protective for certain mental disorders.


Sexual Arousal Negative Mood Skin Conductance Level Body Odor Main Olfactory Bulb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

chemosensory event-related potential


functional magnetic resonance imaging


Grüneberg ganglion


human leukocyte antigen


major histocompatibility complex


olfactory sensory neuron


positron emission tomography


prefrontal cortex


single nucleotide polymorphism


trace amine associated receptor


vomeronasal organ



The author would like to thank Sabine Schlösser and Katrin Lübke for their help in editing the manuscript.


  1. [1]
    J.S. House, K.R. Landis, D. Umberson: Social relationships and health, Science 241(4865), 540–545 (1988)CrossRefGoogle Scholar
  2. [2]
    A. Steptoe, A. Shankar, P. Demakakos, J. Wardle: Social isolation, loneliness, and all-cause mortality in older men and women, Proc. Natl. Acad. Sci. U.S.A. 110(15), 5797–5801 (2013)CrossRefGoogle Scholar
  3. [3]
    J.T. Cacioppo, W. Patrick: Loneliness: Human Nature and the Need for Social Connection (W. W. Norton & Co., New York 2008)Google Scholar
  4. [4]
    R.F. Baumeister, J.M. Twenge, C.K. Nuss: Effects of social exclusion on cognitive processes: Anticipated aloneness reduces intelligent thought, J. Pers. Soc. Psychol. 83(4), 817–827 (2002)CrossRefGoogle Scholar
  5. [5]
    N.I. Eisenberger: The pain of social disconnection: Examining the shared neural underpinnings of physical and social pain, Nat. Rev. Neurosci. 13(6), 421–434 (2012)CrossRefGoogle Scholar
  6. [6]
    N.I. Eisenberger, M.D. Lieberman, K.D. Williams: Does rejection hurt? An fMRI study of social exclusion, Science 302(5643), 290–292 (2003)CrossRefGoogle Scholar
  7. [7]
    E. Kross, M.G. Berman, W. Mischel, E.E. Smith, T.D. Wager: Social rejection shares somatosensory representations with physical pain, Proc. Natl. Acad. Sci. U.S.A. 108(15), 6270–6275 (2011)CrossRefGoogle Scholar
  8. [8]
    J. Liu, K. Dietz, D.M. Loyht, X. Pedre, D. Kelkar, J. Kaur, V. Vialou, M.K. Lobo, D.M. Dietz, E.J. Nestler, J. Dupree, P. Casaccia: Impaired adult myelination in the prefrontal cortex of socially isolated mice, Nat. Neurosci. 15(12), 1621–1623 (2012)CrossRefGoogle Scholar
  9. [9]
    R.I.M. Dunbar, S. Shultz: Evolution in the social brain, Science 317(5843), 1344–1347 (2007)CrossRefGoogle Scholar
  10. [10]
    R.I.M. Dunbar: The social brain hypothesis, Evol. Anthropol. 6(5), 178–190 (1998)CrossRefGoogle Scholar
  11. [11]
    R. Adolphs: Conceptual challenges and directions for social neuroscience, Neuron 65(6), 752–767 (2010)CrossRefGoogle Scholar
  12. [12]
    N. Kanwisher, J. McDermott, M.M. Chun: The fusiform face area: A module in human extrastriate cortex specialized for face perception, J. Neurosci. 17(11), 4302–4311 (1997)Google Scholar
  13. [13]
    C. Rezlescu, J.J.S. Barton, D. Pitcher, B. Duchaine: Normal acquisition of expertise with greebles in two cases of acquired prosopagnosia, Proc. Natl. Acad. Sci. U.S.A 111(14), 5123–5128 (2014)CrossRefGoogle Scholar
  14. [14]
    C.N. Smith, A. Jeneson, J.C. Frascino, C.B. Kirwan, R.O. Hopkins, L.R. Squire: When recognition memory is independent of hippocampal function, Proc. Natl. Acad. Sci. U.S.A. 111(27), 9935–9940 (2014)CrossRefGoogle Scholar
  15. [15]
    R.I.M. Dunbar: The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms, Neurosci. Biobehav. Rev. 34(2), 260–268 (2010)CrossRefGoogle Scholar
  16. [16]
    I. Morrison, L.S. Löken, H. Olausson: The skin as a social organ, Exp. Brain Res. 204(3), 305–314 (2010)CrossRefGoogle Scholar
  17. [17]
    T. Singer, C. Lamm: The social neuroscience of empathy, Ann. N.Y. Acad. Sci. 1156, 81–96 (2009)CrossRefGoogle Scholar
  18. [18]
    C. Bushdid, M.O. Magnasco, L.B. Vosshall, A. Keller: Humans can discriminate more than 1 trillion olfactory stimuli, Science 343(6177), 1370–1372 (2014)CrossRefGoogle Scholar
  19. [19]
    T.D. Wyatt: Pheromones and Animal Behavior, 2nd edn. (Cambridge Univ. Press, Cambridge 2014)Google Scholar
  20. [20]
    B.M. Pause, K. Haberkorn, F. Eggert, W. Müller-Ruchholtz, H.J. Bestmann, R. Ferstl: Fractionation and bioassay of human odor types, Physiol. Behav. 61(6), 957–961 (1997)CrossRefGoogle Scholar
  21. [21]
    E. Callaway: Mammalian brain followed a scented evolutionary trail, Nature (2011), doi:10.1038/news.2011.302Google Scholar
  22. [22]
    T.B. Rowe, T.E. Macrini, Z.X. Luo: Fossil evidence on origin of the mammalian brain, Science 332(6032), 955–957 (2011)CrossRefGoogle Scholar
  23. [23]
    M. Bastir, A. Rosas, P. Gunz, A. Pena-Melian, G. Manzi, K. Harvati, R. Kruszynski, C. Stringer, J.J. Hublin: Evolution of the base of the brain in highly encephalized human species, Nat. Commun. (2011), doi:10.1038/Ncomms1593Google Scholar
  24. [24]
    R.L. Doty: The Great Pheromone Myth (Johns Hopkins Univ. Press, Baltimore 2010)Google Scholar
  25. [25]
    C.J. Wysocki, G. Preti: Facts, fallacies, fears, and frustrations with human pheromones, Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 281(1), 1201–1211 (2004)CrossRefGoogle Scholar
  26. [26]
    B. Nicholson: Does kissing aid human bonding by semiochemical addiction, Brit. J. Dermatol. 111(5), 621–627 (1984)CrossRefGoogle Scholar
  27. [27]
    M.G. Adams: Odour-producing organs of mammals, Symp. Zool. Soc. Lond. 45, 57–86 (1980)Google Scholar
  28. [28]
    M. Heckmann, B. Teichmann, B.M. Pause, G. Plewig: Amelioration of body odor after intracutaneous axillary injection of botulinum toxin, A. Arch. Dermatol. 139(1), 57–59 (2003)CrossRefGoogle Scholar
  29. [29]
    X.N. Zeng, J.J. Leyden, H.J. Lawley, K. Sawano, I. Nohara, G. Preti: Analysis of characteristic odors from human male axillae, J. Chem. Ecol. 17(7), 1469–1492 (1991)CrossRefGoogle Scholar
  30. [30]
    A.I. Spielman, X.N. Zeng, J.J. Leyden, G. Preti: Proteinaceous precursors of human axillary odor – Isolation of 2 novel odor-binding proteins, Experientia 51(1), 40–47 (1995)Google Scholar
  31. [31]
    Y. Hasegawa, M. Yabuki, M. Matsukane: Identification of new odoriferous compounds in human axillary sweat, Chem. Biodivers. 1(12), 2042–2050 (2004)CrossRefGoogle Scholar
  32. [32]
    A. Natsch, J. Schmid, F. Flachsmann: Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria, Chem. Biodivers. 1(7), 1058–1072 (2004)CrossRefGoogle Scholar
  33. [33]
    M. Troccaz, C. Starkenmann, Y. Niclass, M. van de Waal, A.J. Clark: 3-methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile, Chem. Biodivers. 1(7), 1022–1035 (2004)CrossRefGoogle Scholar
  34. [34]
    D.B. Gower, B.A. Ruparelia: Olfaction in humans with special reference to odorous 16-androstenes – Their occurrence, perception and possible social, psychological and sexual impact, J. Endocrinol. 137(2), 167–187 (1993)CrossRefGoogle Scholar
  35. [35]
    J.L. Leyden: Bacteriology of the human axilla: Relationship to axillary odor. In: Antperspirands and Deodorants, Cosmetic Science and Technology Series, Vol. 7, ed. by K. Laden, C.B. Felger (Marcel Dekker, New York 1988) pp. 311–320Google Scholar
  36. [36]
    T.K. Kwan, M.A. Kraevskaya, H.L. Makin, D.J. Trafford, D.B. Gower: Use of gas chromatographic-mass spectrometric techniques in studies of androst-16-ene and androgen biosynthesis in human testis; cytosolic specific binding of 5alpha-androst-16-en-3-one, J. Steroid Biochem. Mol. Biol. 60(1/2), 137–146 (1997)CrossRefGoogle Scholar
  37. [37]
    A.I. Mallet, K.T. Holland, P.J. Rennie, W.J. Watkins, D.B. Gower: Applications of gas chromatography-mass spectrometry in the study of androgen and odorous 16-androstene metabolism by human axillary bacteria, J. Chromatogr. Biomed. Appl. 562(1/2), 647–658 (1991)CrossRefGoogle Scholar
  38. [38]
    A. Nixon, A.I. Mallet, D.B. Gower: Simultaneous quantification of five odorous steroids (16-androstenes) in the axillary hair of men, J. Steroid Biochem. 29(5), 505–510 (1988)CrossRefGoogle Scholar
  39. [39]
    J.N. Labows: Odor detection, generation, and etiology in the axilla. In: Antiperspirands and Deodorands, Cosmetic Science and Technology Series, Vol. 7, ed. by K. Laden, C.B. Felger (Marcel Dekker, New York 1988) pp. 321–343Google Scholar
  40. [40]
    G. Preti, J.J. Leyden: Genetic influences on human body odor: From genes to the axillae, J. Invest. Dermatol. 130(2), 344–346 (2010), doi:10.1038/Jid.2009.396CrossRefGoogle Scholar
  41. [41]
    A. Martin, M. Saathoff, F. Kuhn, H. Max, L. Terstegen, A. Natsch: A functional ABCC11 allele is essential in the biochemical formation of human axillary odor, J. Invest. Dermatol. 130(2), 529–540 (2010)CrossRefGoogle Scholar
  42. [42]
    B.M. Pause, K. Krauel, B. Sojka, R. Ferstl: Body odor evoked potentials: A new method to study the chemosensory perception of self and non-self in humans, Genetica 104(3), 285–294 (1998)CrossRefGoogle Scholar
  43. [43]
    R. Zernecke, A.M. Kleemann, K. Haegler, J. Albrecht, B. Vollmer, J. Linn, H. Brückmann, M. Wiesmann: Chemosensory properties of human sweat, Chem. Senses 35(2), 101–108 (2010)CrossRefGoogle Scholar
  44. [44]
    R.C. Araneda, A.D. Kini, S. Firestein: The molecular receptive range of an odorant receptor, Nat. Neurosci. 3(12), 1248–1255 (2000)CrossRefGoogle Scholar
  45. [45]
    S.T. Carmichael, M.C. Clugnet, J.L. Price: Central olfactory connections in the macaque monkey, J. Comp. Neurol. 346(3), 403–434 (1994)CrossRefGoogle Scholar
  46. [46]
    T.A. Cleland, C. Linster: Central olfactory structures. In: Handbook of Olfaction and Gustation, ed. by R.L. Doty (Marcel Dekker, New York 2003) pp. 165–180Google Scholar
  47. [47]
    A. Mackay-Sim, J.P. Royet: Structure and function of the olfactory system. In: Olfaction and the Brain, ed. by W. Brewer, D. Castle, C. Pantelis (Cambridge Univ. Press, New York 2006) pp. 3–27CrossRefGoogle Scholar
  48. [48]
    G.M. Arisi, M.L. Foresti, S. Mukherjee, L.A. Shapiro: The role of olfactory stimulus in adult mammalian neurogenesis, Behav. Brain Res. 227(2), 356–362 (2012)CrossRefGoogle Scholar
  49. [49]
    P.M. Lledo, M. Alonso, M.S. Grubb: Adult neurogenesis and functional plasticity in neuronal circuits, Nat. Rev. Neurosci. 7(3), 179–193 (2006)CrossRefGoogle Scholar
  50. [50]
    M. Sakamoto, N. Ieki, G. Miyoshi, D. Mochimaru, H. Miyachi, T. Imura, M. Yamaguchi, G. Fishell, K. Mori, R. Kageyama, I. Imayoshi: Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning, J. Neurosci. 34(17), 5788–5799 (2014)CrossRefGoogle Scholar
  51. [51]
    K. Kobayakawa, R. Kobayakawa, H. Matsumoto, Y. Oka, T. Imai, M. Ikawa, M. Okabe, T. Ikeda, S. Itohara, T. Kikusui, K. Mori, H. Sakano: Innate versus learned odour processing in the mouse olfactory bulb, Nature 450(7169), 503–508 (2007)CrossRefGoogle Scholar
  52. [52]
    M. Sakamoto, I. Imayoshi, T. Ohtsuka, M. Yamaguchi, K. Mori, R. Kageyama: Continuous neurogenesis in the adult forebrain is required for innate olfactory responses, Proc. Natl. Acad. Sci. U.S.A. 108(20), 8479–8484 (2011)CrossRefGoogle Scholar
  53. [53]
    D.S. Koos, S.E. Fraser: The Grueneberg ganglion projects to the olfactory bulb, Neuroreport 16(17), 1929–1932 (2005)CrossRefGoogle Scholar
  54. [54]
    J. Brechbühl, F. Moine, M. Klaey, M. Nenniger-Tosato, N. Hurni, F. Sporkert, C. Giroud, M.-C. Broillet: Mouse alarm pheromone shares structural similarity with predator scents, Proc. Natl. Acad. Sci. U.S.A. 110(12), 4762–4767 (2013)CrossRefGoogle Scholar
  55. [55]
    S.D. Liberles, L.B. Buck: A second class of chemosensory receptors in the olfactory epithelium, Nature 442(7103), 645–650 (2006)CrossRefGoogle Scholar
  56. [56]
    V. Carnicelli, A. Santoro, S. Sellari-Franceschini, S. Berrettini, R. Zucchi: Expression of trace amine-associated receptors in human nasal mucosa, Chemosens. Percept. 3(2), 99–107 (2010)CrossRefGoogle Scholar
  57. [57]
    I. Wallrabenstein, J. Kuklan, L. Weber, S. Zborala, M. Werner, J. Altmüller, C. Becker, A. Schmidt, H. Hatt, T. Hummel, G. Gisselmann: Human trace amine-associated receptor TAAR5 can be activated by trimethylamine, Plos One 8(2), e54950 (2013)CrossRefGoogle Scholar
  58. [58]
    J. Fleischer, K. Schwarzenbacher, H. Breer: Expression of trace amine-associated receptors in the Grueneberg Ganglion, Chem. Senses 32(6), 623–631 (2007)CrossRefGoogle Scholar
  59. [59]
    A. Dewan, R. Pacifico, R. Zhan, D. Rinberg, T. Bozza: Non-redundant coding of aversive odours in the main olfactory pathway, Nature 497(7450), 486–489 (2013)CrossRefGoogle Scholar
  60. [60]
    P. Chamero, T. Leinders-Zufall, F. Zufall: From genes to social communication: Molecular sensing by the vomeronasal organ, Trends Neurosci. 35(10), 597–606 (2012)CrossRefGoogle Scholar
  61. [61]
    L. Monti-Bloch, B.I. Grosser: Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium, J. Steroid Biochem. Mol. Biol. 39(4B), 573–582 (1991)CrossRefGoogle Scholar
  62. [62]
    L. Monti-Bloch, C. Jennings-White, D.S. Dolberg, D.L. Berliner: The human vomeronasal system, Psychoneuroendocrinology 19(5/7), 673–686 (1994)CrossRefGoogle Scholar
  63. [63]
    B.I. Grosser, L. Monti-Bloch, C. Jennings-White, D.L. Berliner: Behavioral and electrophysiological effects of androstadienone, a human pheromone, Psychoneuroendocrinology 25(3), 289–299 (2000)CrossRefGoogle Scholar
  64. [64]
    N. Sobel, W.M. Brown: The scented brain: Pheromonal responses in humans, Neuron 31(4), 512–514 (2001)CrossRefGoogle Scholar
  65. [65]
    J. Frasnelli, J.N. Lundström, J.A. Boyle, A. Katsarkas, M. Jones-Gotman: The vomeronasal organ is not involved in the perception of endogenous odors, Hum. Brain. Mapp. 32(3), 450–460 (2011)CrossRefGoogle Scholar
  66. [66]
    M. Meredith: Human vomeronasal organ function: A critical review of best and worst cases, Chem. Senses 26(4), 433–445 (2001)CrossRefGoogle Scholar
  67. [67]
    I. Rodriguez, C.A. Greer, M.Y. Mok, P. Mombaerts: A putative pheromone receptor gene expressed in human olfactory mucosa, Nat. Genetics 26(1), 18–19 (2000)CrossRefGoogle Scholar
  68. [68]
    K.M. Dorries, E. Adkins-Regan, B.P. Halpern: Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs, Brain. Behav. Evol. 49(1), 53–62 (1997)CrossRefGoogle Scholar
  69. [69]
    B. Schaal, G. Coureaud, D. Langlois, C. Giniès, E. Sémon, G. Perrier: Chemical and behavioural characterization of the rabbit mammary pheromone, Nature 424(6944), 68–72 (2003)CrossRefGoogle Scholar
  70. [70]
    M. Sam, S. Vora, B. Malnic, W.D. Ma, M.V. Novotny, L.B. Buck: Neuropharmacology – Odorants may arouse instinctive behaviours, Nature 412(6843), 142–142 (2001)CrossRefGoogle Scholar
  71. [71]
    K.N. Baxi, K.M. Dorries, H.L. Eisthen: Is the vomeronasal system really specialized for detecting pheromones?, Trends Neurosci. 29(1), 1–7 (2006)CrossRefGoogle Scholar
  72. [72]
    P. Karlson, M. Lüscher: ‘‘Pheromones’’: A new term for a class of biologically active substances, Nature 183(4653), 55–56 (1959)CrossRefGoogle Scholar
  73. [73]
    K.M. Dorries, E. Adkins-Regan, B.P. Halpern: Olfactory sensitivity to the pheromone, androstenone, is sexually dimorphic in the pig, Physiol. Behav. 57(2), 255–259 (1995)CrossRefGoogle Scholar
  74. [74]
    G.P. Pearce, P.E. Hughes: An investigation of the roles of boar-component stimuli in the expression of proceptivity in the female pig, Appl. Anim. Behav. Sci. 18(3), 287–299 (1987)CrossRefGoogle Scholar
  75. [75]
    M.D. Kirk-Smith, D.A. Booth: Effects of androstenone on choice of location in other’s presence, Olfaction Taste 7, 397–400 (1980)Google Scholar
  76. [76]
    B.M. Pause: Are androgen steroids acting as pheromones in humans?, Physiol. Behav. 83(1), 21–29 (2004)CrossRefGoogle Scholar
  77. [77]
    M.D. Kirk-Smith, D.A. Booth: Chemoreception in human behaviour: Experimental analysis of the social effects of fragrances, Chem. Senses 12(1), 159–166 (1987)CrossRefGoogle Scholar
  78. [78]
    E.E. Filsinger, J.J. Braun, W.C. Monte, D.E. Linder: Human (homo sapiens) responses to the pig (sus scrofa) sex pheromone 5-alpha-androst-16-en-3-one, J. Comp. Psychol. 98(2), 219–222 (1984)CrossRefGoogle Scholar
  79. [79]
    E.E. Filsinger, J.J. Braun, W.C. Monte: An examination of the effects of putative pheromones on human judgments, Ethol. Sociobiol. 6(4), 227–236 (1985)CrossRefGoogle Scholar
  80. [80]
    K. Grammer: 5-alpha-androst-16en-3-alpha-on: A male pheromone? A brief report, Ethol. Sociobiol. 14(3), 201–207 (1993)CrossRefGoogle Scholar
  81. [81]
    V. Treyer, H. Koch, H.R. Briner, N.S. Jones, A. Buck, D.B. Simmen: Male subjects who could not perceive the pheromone 5a-Androst-16-en-3-one, produced similar orbitofrontal changes on PET compared with perceptible phenylethyl alcohol (rose), Rhinology 44(4), 278–282 (2006)Google Scholar
  82. [82]
    A.R. Gustavson, M.E. Dawson, D.G. Bonett: Androstenol, a putative human pheromone, affects human (homo sapiens) male choice performance, J. Comp. Psychol. 101(2), 210–212 (1987)CrossRefGoogle Scholar
  83. [83]
    J.J. Cowley, B.W. Brooksbank: Human exposure to putative pheromones and changes in aspects of social behaviour, J. Steroid Biochem. Mol. Biol. 39(4B), 647–659 (1991)CrossRefGoogle Scholar
  84. [84]
    D. Benton: The influence of androstenol – A putative human pheromone – On mood throughout the menstrual cycle, Biol. Psychol. 15(3/4), 249–256 (1982)CrossRefGoogle Scholar
  85. [85]
    D. Benton, V. Wastell: Effects of androstenol on human sexual arousal, Biol. Psychol. 22(2), 141–147 (1986)CrossRefGoogle Scholar
  86. [86]
    S. Jacob, S. Garcia, D. Hayreh, M.K. McClintock: Psychological effects of musky compounds: Comparison of androstadienone with androstenol and muscone, Horm. Behav. 42(3), 274–283 (2002)CrossRefGoogle Scholar
  87. [87]
    I. Savic, H. Berglund: Androstenol – A steroid derived odor activates the hypothalamus in women, Plos One 5(2), e8651 (2010)CrossRefGoogle Scholar
  88. [88]
    G.K. Beauchamp, R.L. Doty, D.G. Moulton, R.A. Mugford: The pheromone concept in mammalian chemical communication: A critique. In: Mammalian Olfaction, Reproductive Processes, and Behavior, ed. by R.L. Doty (Academic Press, New York 1976) pp. 143–160CrossRefGoogle Scholar
  89. [89]
    R.L. Doty: Mammalian pheromones: Fact or fantasy? In: Handbook of Olfaction and Gustation, ed. by R.L. Doty (Marcel Dekker, New York 2003) pp. 345–383CrossRefGoogle Scholar
  90. [90]
    M.D. Kirk-Smith: Culture and olfactory communication. In: The Ethological Roots of Culture, Vol. 78, ed. by R.A. Gardner (Kluwer Academic, Dordrecht 1995) pp. 385–406Google Scholar
  91. [91]
    S. Jacob, M.K. McClintock: Psychological state and mood effects of steroidal chemosignals in women and men, Horm. Behav. 37(1), 57–78 (2000)CrossRefGoogle Scholar
  92. [92]
    J.N. Lundström, M. Goncalves, F. Esteves, M.J. Olsson: Psychological effects of subthreshold exposure to the putative human pheromone 4,16-androstadien-3-one, Horm. Behav. 44(5), 395–401 (2003)CrossRefGoogle Scholar
  93. [93]
    T.A. Hummer, M.K. McClintock: Putative human pheromone androstadienone attunes the mind specifically to emotional information, Horm. Behav. 55(4), 548–559 (2009)CrossRefGoogle Scholar
  94. [94]
    S. Jacob, D.J. Hayreh, M.K. McClintock: Context-dependent effects of steroid chemosignals on human physiology and mood, Physiol. Behav. 74(1/2), 15–27 (2001)CrossRefGoogle Scholar
  95. [95]
    J.N. Lundström, M.J. Olsson: Subthreshold amounts of social odorant affect mood, but not behavior, in heterosexual women when tested by a male, but not a female, experimenter, Biol. Psychol. 70(3), 197–204 (2005)CrossRefGoogle Scholar
  96. [96]
    M. Bensafi, W.M. Brown, T. Tsutsui, J.D. Mainland, B.N. Johnson, E.A. Bremner, N. Young, I. Mauss, B. Ray, J. Gross, J. Richards, I. Stappen, R.W. Levenson, N. Sobel: Sex-steroid derived compounds induce sex-specific effects on autonomic nervous system function in humans, Behav. Neurosci. 117(6), 1125–1134 (2003)CrossRefGoogle Scholar
  97. [97]
    M. Bensafi, W.M. Brown, R. Khan, B. Levenson, N. Sobel: Sniffing human sex-steroid derived compounds modulates mood, memory and autonomic nervous system function in specific behavioral contexts, Behav. Brain Res. 152(1), 11–22 (2004)Google Scholar
  98. [98]
    C. Wyart, W.W. Webster, J.H. Chen, S.R. Wilson, A. McClary, R.M. Khan, N. Sobel: Smelling a single component of male sweat alters levels of cortisol in women, J. Neurosci. 27(6), 1261–1265 (2007)CrossRefGoogle Scholar
  99. [99]
    P. Huoviala, M.J. Rantala: A putative human pheromone, androstadienone, increases cooperation between men, Plos One 8(5), e62499 (2013)CrossRefGoogle Scholar
  100. [100]
    W. Zhou, X. Yang, K. Chen, P. Cai, S. He, Y. Jiang: Chemosensory communication of gender through two human steroids in a sexually dimorphic manner, Curr. Biol. 24(10), 1091–1095 (2014)CrossRefGoogle Scholar
  101. [101]
    T.K. Saxton, A. Lyndon, A.C. Little, S.C. Roberts: Evidence that androstadienone, a putative human chemosignal, modulates women’s attributions of men’s attractiveness, Horm. Behav. 54(5), 597–601 (2008)CrossRefGoogle Scholar
  102. [102]
    S. Jacob, L.H. Kinnunen, J. Metz, M. Cooper, M.K. McClintock: Sustained human chemosignal unconsciously alters brain function, Neuroreport 12(11), 2391–2394 (2001)CrossRefGoogle Scholar
  103. [103]
    I. Savic, H. Berglund, B. Gulyas, P. Roland: Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans, Neuron 31(4), 661–668 (2001)CrossRefGoogle Scholar
  104. [104]
    B. Gulyas, S. Keri, B.T. O’Sullivan, J. Decety, P.E. Roland: The putative pheromone androstadienone activates cortical fields in the human brain related to social cognition, Neurochem. Int. 44(8), 595–600 (2004)CrossRefGoogle Scholar
  105. [105]
    R.P. Michael, E.B. Keverne: Primate sex pheromones of vaginal origin, Nature 225(5227), 84–85 (1970)CrossRefGoogle Scholar
  106. [106]
    R.P. Michael, E.B. Keverne, R.W. Bonsall: Pheromones: Isolation of male sex attractants from a female primate, Science 172(3986), 964–966 (1971)CrossRefGoogle Scholar
  107. [107]
    R.P. Michael, R.W. Bonsall, P. Warner: Human vaginal secretions: Volatile fatty acid content, Science 186(4170), 1217–1219 (1974)CrossRefGoogle Scholar
  108. [108]
    R.P. Michael, R.W. Bonsall, M. Kutner: Volatile fatty acids, ‘‘copulins’’, in human vaginal secretions, Psychoneuroendocrinology 1(2), 153–163 (1975)CrossRefGoogle Scholar
  109. [109]
    D.A. Goldfoot, R.W. Goy, M.A. Kravetz, S.K. Freeman: Lack of effects of vaginal fatty-acids, etc. – Reply to Michael, Bonsall, and Zumpe, Horm. Behav. 7(3), 373–378 (1976)CrossRefGoogle Scholar
  110. [110]
    D.A. Goldfoot, M.A. Kravetz, R.W. Goy, S.K. Freeman: Lack of effect of vaginal lavages and aliphatic acids on ejaculatory responses in rhesus monkeys: Behavioral and chemical analyses, Horm. Behav. 7(1), 1–27 (1976)CrossRefGoogle Scholar
  111. [111]
    E.E. Filsinger, R.A. Fabes: Odor communication, pheromones, and human families, J. Marriage Fam. 47(2), 349–359 (1985)CrossRefGoogle Scholar
  112. [112]
    M.J. Rogel: A critical evaluation of the possibility of higher primate reproductive and sexual pheromones, Psychol. Bull. 85(4), 810–830 (1978)CrossRefGoogle Scholar
  113. [113]
    B. Thysen, W.H. Elliott, P.A. Katzman: Identification of estra-1,3,5(10),16-tetraen-3-ol (estratetraenol) from urine of pregnant women, Steroids 11(1), 73–87 (1968)CrossRefGoogle Scholar
  114. [114]
    M.J. Olsson, J.N. Lundström, S. Diamantopoulou, F. Esteves: A putative female pheromone affects mood in men differently depending on social context, Eur. Rev. Appl. Psychol. 56(4), 279–284 (2006)CrossRefGoogle Scholar
  115. [115]
    N. Sobel, V. Prabhakaran, C.A. Hartley, J.E. Desmond, G.H. Glover, E.V. Sullivan, J.D. Gabrieli: Blind smell: Brain activation induced by an undetected air-borne chemical, Brain 122(Pt 2), 209–217 (1999)CrossRefGoogle Scholar
  116. [116]
    M.I. Posner, S.J. Boies: Components of attention, Psychol. Rev. 78(5), 391–408 (1971)CrossRefGoogle Scholar
  117. [117]
    A.M. Treisman: Selective attention in man, Br. Med. Bull. 20, 12–16 (1964)CrossRefGoogle Scholar
  118. [118]
    R.W. Guillery, S.M. Sherman: Thalamic relay functions and their role in corticocortical communication: Generalizations from the visual system, Neuron 33(2), 163–175 (2002)CrossRefGoogle Scholar
  119. [119]
    B. Hölldobler, E.O. Wilson: The Ants (Springer, Berlin 1990)CrossRefGoogle Scholar
  120. [120]
    G. Coureaud, D. Langlois, G. Sicard, B. Schaal: Newborn rabbit responsiveness to the mammary pheromone is concentration-dependent, Chem. Senses 29(4), 341–350 (2004)CrossRefGoogle Scholar
  121. [121]
    M. Bensafi, T. Tsutsui, R. Khan, R.W. Levenson, N. Sobel: Sniffing a human sex-steroid derived compound affects mood and autonomic arousal in a dose-dependent manner, Psychoneuroendocrinology 29(10), 1290–1299 (2004)CrossRefGoogle Scholar
  122. [122]
    T. Katkov, D.B. Gower: Biosynthesis of androst-16-enes in boar testis tissue, Biochem. J. 117(3), 533–538 (1970)CrossRefGoogle Scholar
  123. [123]
    R.I. Brooks, A.M. Pearson: Steroid-hormone pathways in the pig, with special emphasis on boar odor – A review, J. Anim. Sci. 62(3), 632–645 (1986)CrossRefGoogle Scholar
  124. [124]
    T. Jiang, R. Soussignan, B. Schaal, J.P. Royet: Reward for food odors: An fMRI study of liking and wanting as a function of metabolic state and BMI, Soc. Cogn. Affect. Neurosci. (2014), doi:10.1093/scan/nsu086Google Scholar
  125. [125]
    R. Adolphs: The neurobiology of social cognition, Curr. Opin. Neurobiol. 11(2), 231–239 (2001)CrossRefGoogle Scholar
  126. [126]
    B. Abler, D. Kumpfmüller, G. Grön, M. Walter, J. Stingl, A. Seeringer: Neural correlates of erotic stimulation under different levels of female sexual hormones, Plos One 8(2), e54447 (2013)CrossRefGoogle Scholar
  127. [127]
    X. Zhu, X.Y. Wang, C. Parkinson, C.X. Cai, S. Gao, P.C. Hu: Brain activation evoked by erotic films varies with different menstrual phases: An fMRI study, Behav. Brain Res. 206(2), 279–285 (2010)CrossRefGoogle Scholar
  128. [128]
    J.N. Lundström, M.K. McClintock, M.J. Olsson: Effects of reproductive state on olfactory sensitivity suggest odor specificity, Biol. Psychol. 71(3), 244–247 (2006)CrossRefGoogle Scholar
  129. [129]
    A. Knaapila, H. Tuorila, E. Vuoksimaa, K. Keskitalo-Vuokko, R.J. Rose, J. Kaprio, K. Silventoinen: Pleasantness of the odor of androstenone as a function of sexual intercourse experience in women and men, Arch. Sex. Behav. 41(6), 1403–1408 (2012)CrossRefGoogle Scholar
  130. [130]
    C.J. Wysocki, G.K. Beauchamp: Individual differences in human olfaction. In: Chemical Senses, Vol. 3, ed. by C.J. Wysocki, M.R. Kare (Marcel Dekker, New York 1991) pp. 353–373Google Scholar
  131. [131]
    H.W. Wang, C.J. Wysocki, G.H. Gold: Induction of olfactory receptor sensitivity in mice, Science 260(5110), 998–1000 (1993)CrossRefGoogle Scholar
  132. [132]
    J.D. Mainland, E.A. Bremner, N. Young, B.N. Johnson, R.M. Khan, M. Bensafi, N. Sobel: Olfactory plasticity – One nostril knows what the other learns, Nature 419(6909), 802–802 (2002)CrossRefGoogle Scholar
  133. [133]
    T.J. Jacob, L. Wang, S. Jaffer, S. McPhee: Changes in the odor quality of androstadienone during exposure-induced sensitization, Chem. Senses 31(1), 3–8 (2006)CrossRefGoogle Scholar
  134. [134]
    T. Olender, D. Lancet, D.W. Nebert: Update on the olfactory receptor (OR) gene superfamily, Hum. Genom. 3(1), 87–97 (2008)CrossRefGoogle Scholar
  135. [135]
    A. Keller, H. Zhuang, Q. Chi, L.B. Vosshall, H. Matsunami: Genetic variation in a human odorant receptor alters odour perception, Nature 449(7161), 468–472 (2007)CrossRefGoogle Scholar
  136. [136]
    J.N. Lundström, M.J. Olsson, B. Schaal, T. Hummel: A putative social chemosignal elicits faster cortical responses than perceptually similar odorants, Neuroimage 30(4), 1340–1346 (2006)CrossRefGoogle Scholar
  137. [137]
    T.D. Wyatt: Fifty years of pheromones, Nature 457(7227), 262–263 (2009)CrossRefGoogle Scholar
  138. [138]
    O. Andresen: Concentrations of fat and plasma 5-alpha-androstenone and plasma testosterone in boars selected for rate of body-weight gain and thickness of back fat during growth, sexual-maturation and after mating, J. Reprod. Fert. 48(1), 51–59 (1976)CrossRefGoogle Scholar
  139. [139]
    M. Bonneau: Compounds responsible for boar taint, with special emphasis on androstenone – A review, Livest. Prod. Sci. 9(6), 687–705 (1982)CrossRefGoogle Scholar
  140. [140]
    G. Zamaratskaia, J. Babol, H. Andersson, K. Lundstrom: Plasma skatole and androstenone levels in entire male pigs and relationship between boar taint compounds, sex steroids and thyroxine at various ages, Livest. Prod. Sci. 87(2/3), 91–98 (2004)CrossRefGoogle Scholar
  141. [141]
    D.B. Gower, S. Bird, P. Sharma, F.R. House: Axillary 5-alpha-androst-16-en-3-one in men and women – Relationships with olfactory acuity to odorous 16-androstenes, Experientia 41(9), 1134–1136 (1985)CrossRefGoogle Scholar
  142. [142]
    J. Archer: Testosterone and human aggression: An evaluation of the challenge hypothesis, Neurosci. Biobehav. Rev. 30(3), 319–345 (2006)CrossRefGoogle Scholar
  143. [143]
    C. Eisenegger, J. Haushofer, E. Fehr: The role of testosterone in social interaction, Trends Cogn. Sci. 15(6), 263–271 (2011)CrossRefGoogle Scholar
  144. [144]
    B. Schaal, R.E. Tremblay, R. Soussignan, E.J. Susman: Male testosterone linked to high social dominance but low physical aggression in early adolescence, J. Am. Acad. Child Adolesc. Psychiatry. 35(10), 1322–1330 (1996)CrossRefGoogle Scholar
  145. [145]
    I. van Bokhoven, S.H. van Goozen, H. van Engeland, B. Schaal, L. Arseneault, J.R. Seguin, J.M. Assaad, D.S. Nagin, F. Vitaro, R.E. Tremblay: Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males, Horm. Behav. 50(1), 118–125 (2006)CrossRefGoogle Scholar
  146. [146]
    K.T. Lübke, B.M. Pause: Sex-hormone dependent perception of androstenone suggests its involvement in communicating competition and aggression, Physiol. Behav. 123, 136–141 (2014)CrossRefGoogle Scholar
  147. [147]
    B.M. Pause, K.P. Rogalski, B. Sojka, R. Ferstl: Sensitivity to androstenone in female subjects is associated with an altered brain response to male body odor, Physiol. Behav. 68(1/2), 129–137 (1999)CrossRefGoogle Scholar
  148. [148]
    K.T. Lübke, B.M. Pause: Always follow your nose: The functional significance of social chemosignals in human reproduction and survival, Horm. Behav. 68C, 134–144 (2015)CrossRefGoogle Scholar
  149. [149]
    R.J. Stevenson: An initial evaluation of the functions of human olfaction, Chem. Senses 35(1), 3–20 (2010)CrossRefGoogle Scholar
  150. [150]
    T. Boehm, F. Zufall: MHC peptides and the sensory evaluation of genotype, Trends Neurosci. 29(2), 100–107 (2006)CrossRefGoogle Scholar
  151. [151]
    D. Restrepo, W.H. Lin, E. Salcedo, K. Yarnazaki, G. Beauchamp: Odortypes and MHC peptides: Complementary chemosignals of MHC haplotype?, Trends Neurosci. 29(11), 604–609 (2006)CrossRefGoogle Scholar
  152. [152]
    J. Havlicek, S.C. Roberts: MHC-correlated mate choice in humans: A review, Psychoneuroendocrinology 34(4), 497–512 (2009)CrossRefGoogle Scholar
  153. [153]
    S. Jacob, M.K. McClintock, B. Zelano, C. Ober: Paternally inherited HLA alleles are associated with women’s choice of male odor, Nat. Genet. 30(2), 175–179 (2002)CrossRefGoogle Scholar
  154. [154]
    B.M. Pause, K. Krauel, C. Schraders, B. Sojka, E. Westphal, W. Müller-Ruchholtz, R. Ferstl: The human brain is a detector of chemosensorily transmitted HLA-class I-similarity in same- and opposite-sex relations, Proc. R. Soc. B 273(1585), 471–478 (2006)CrossRefGoogle Scholar
  155. [155]
    B.M. Pause: Processing of body odor signals by the human brain, Chemosens. Percept. 5(1), 55–63 (2012)CrossRefGoogle Scholar
  156. [156]
    M. Milinski, I. Croy, T. Hummel, T. Boehm: Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment, Proc. R. Soc. B (1755), doi:10.1098/Rspb.2012.2889Google Scholar
  157. [157]
    A. Natsch: A human chemosensory modality to detect peptides in the nose?, Proc. R. Soc. B 281(1776), 20131678 (2013)CrossRefGoogle Scholar
  158. [158]
    M. Milinski, I. Croy, T. Hummel, T. Boehm: Reply to A human chemo-sensory modality to detect peptides in the nose? by A. Natsch, Proc, R. Soc. B (2014), doi:10.1098/Rspb.2013.2816Google Scholar
  159. [159]
    R.L. Doty, M. Ford, G. Preti, G.R. Huggins: Changes in the intensity and pleasantness of human vaginal odors during the menstrual cycle, Science 190(4221), 1316–1318 (1975)CrossRefGoogle Scholar
  160. [160]
    D. Singh, P.M. Bronstad: Female body odour is a potential cue to ovulation, Proc. R. Soc. B 268(1469), 797–801 (2001)CrossRefGoogle Scholar
  161. [161]
    W. Zhou, D. Chen: Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices, J. Neurosci. 28(53), 14416–14421 (2008)CrossRefGoogle Scholar
  162. [162]
    M.K. Clintock: Menstrual synchrony and suppression, Nature 229(5282), 244–245 (1971)CrossRefGoogle Scholar
  163. [163]
    K. Stern, M.K. McClintock: Regulation of ovulation by human pheromones, Nature 392(6672), 177–179 (1998)CrossRefGoogle Scholar
  164. [164]
    M.K. McClintock: Pheromones, Odors and Vasanas: The neuroendocrinology of social chemosignals in humans and animal. In: Hormones, Brain and Behavior, Vol. 1, ed. by D.W. Pfaff, A.P. Arnold, A.M. Etgen, S.E. Fahrbach, R.T. Rubin (Academic Press, San Diego 2002) pp. 797–870CrossRefGoogle Scholar
  165. [165]
    J.C. Schank: Measurement and cycle variability: Reexamining the case for ovarian-cycle synchrony in primates, Behav. Process. 56(3), 131–146 (2001)CrossRefGoogle Scholar
  166. [166]
    N.O. Rule, N. Ambady, R.B. Adams, C.N. Macrae: Accuracy and awareness in the perception and categorization of male sexual orientation, J. Pers. Soc. Psychol. 95(5), 1019–1028 (2008)CrossRefGoogle Scholar
  167. [167]
    N.O. Rule, N. Ambady, K.C. Hallett: Female sexual orientation is perceived accurately, rapidly, and automatically from the face and its features, J. Exp. Soc. Psychol. 45(6), 1245–1251 (2009)CrossRefGoogle Scholar
  168. [168]
    J. Valentova, G. Rieger, J. Havlicek, J.A.W. Linsenmeier, J.M. Bailey: Judgments of sexual orientation and masculinity-femininity based on thin slices of behavior: A cross-cultural comparison, Arch. Sex. Behav. 40(6), 1145–1152 (2011)CrossRefGoogle Scholar
  169. [169]
    J.V. Valentova, J. Havlicek: Perceived sexual orientation based on vocal and facial stimuli is linked to self-rated sexual orientation in czech men, Plos One 8(12), e82417 (2013)CrossRefGoogle Scholar
  170. [170]
    F. Kranz, A. Ishai: Face perception is modulated by sexual preference, Curr. Biol. 16(1), 63–68 (2006)CrossRefGoogle Scholar
  171. [171]
    R.L. Doty, M.M. Orndorff, J. Leyden, A. Kligman: Communication of gender from human axillary odors – relationship to perceived intensity and hedonicity, Behav. Biol. 23(3), 373–380 (1978)CrossRefGoogle Scholar
  172. [172]
    R.L. Doty, P.A. Green, C. Ram, S.L. Yankell: Communication of gender from human breath odors – relationship to perceived intensity and pleasantness, Horm. Behav. 16(1), 13–22 (1982)CrossRefGoogle Scholar
  173. [173]
    Y. Martins, G. Preti, C.R. Crabtree, T. Runyan, A.A. Vainius, C.J. Wysocki: Preference for human body odors is influenced by gender and sexual orientation, Psychol. Sci. 16(9), 694–701 (2005)CrossRefGoogle Scholar
  174. [174]
    M.J.T. Sergeant, T.E. Dickins, M.N.O. Davies, M.D. Griffiths: Women’s hedonic ratings of body odor of heterosexual and homosexual men, Arch. Sex. Behav. 36(3), 395–401 (2007)CrossRefGoogle Scholar
  175. [175]
    K.T. Lübke, M. Hoenen, B.M. Pause: Differential processing of social chemosignals obtained from potential partners in regards to gender and sexual orientation, Behav. Brain Res. 228(2), 375–387 (2012)CrossRefGoogle Scholar
  176. [176]
    N.J. Mehdiabadi, C.N. Jack, T.T. Farnham, T.G. Platt, S.E. Kalla, G. Shaulsky, D.C. Queller, J.E. Strassmann: Kin preference in a social microbe – Given the right circumstances, even an amoeba chooses to be altruistic towards its relatives, Nature 442(7105), 881–882 (2006)CrossRefGoogle Scholar
  177. [177]
    W.D. Hamilton: The genetical evolution of social behaviour I & II, J. Theor. Biol. 7(1), 1–52 (1964)CrossRefGoogle Scholar
  178. [178]
    A. Olsson, J.P. Ebert, M.R. Banaji, E.A. Phelps: The role of social groups in the persistence of learned fear, Science 309(5735), 785–787 (2005)CrossRefGoogle Scholar
  179. [179]
    C.K.W. De Dreu, L.L. Greer, M.J.J. Handgraaf, S. Shalvi, G.A. Van Kleef, M. Baas, F.S. Ten Velden, E. Van Dijk, S.W.W. Feith: The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans, Science 328(5984), 1408–1411 (2010)CrossRefGoogle Scholar
  180. [180]
    R.H. Porter: Olfaction and human kin recognition, Genetica 104(3), 259–263 (1999)CrossRefGoogle Scholar
  181. [181]
    R.H. Porter, B. Schaal: Olfaction and the development of social behavior in neonatal mammals. In: Handbook of Olfaction and Gustation, ed. by R.L. Doty (Marcel Dekker, New York 2003) pp. 309–327Google Scholar
  182. [182]
    S.C. Roberts, L.M. Gosling, T.D. Spector, P. Miller, D.J. Penn, M. Petrie: Body odor similarity in noncohabiting twins, Chem. Senses 30(8), 651–656 (2005)CrossRefGoogle Scholar
  183. [183]
    E.M. Ables, L.M. Kay, J.M. Mateo: Rats assess degree of relatedness from human odors, Physiol. Behav. 90(5), 726–732 (2007)CrossRefGoogle Scholar
  184. [184]
    J.N. Lundström, J.A. Boyle, R.J. Zatorre, M. Jones-Gotman: The neuronal substrates of human olfactory based kin recognition, Hum. Brain. Mapp. 30(8), 2571–2580 (2009)CrossRefGoogle Scholar
  185. [185]
    J.N. Lundström, M.J. Olsson: Functional neuronal processing of human body odors, Vitam. Horm. 83, 1–23 (2010)CrossRefGoogle Scholar
  186. [186]
    T. Lord, M. Kasprzak: Identification of self through olfaction, Percept. Motor Skill. 69(1), 219–224 (1989)CrossRefGoogle Scholar
  187. [187]
    S.M. Platek, J.W. Thomson, G.G. Gallup: Cross-modal self-recognition: The role of visual, auditory, and olfactory primes, Conscious. Cogn. 13(1), 197–210 (2004)CrossRefGoogle Scholar
  188. [188]
    F.B.M. de Waal: Putting the altruism back into altruism: The evolution of empathy, Annu. Rev. Psychol. 59, 279–300 (2008)CrossRefGoogle Scholar
  189. [189]
    B. Schaal, T. Hummel, R. Soussignan: Olfaction in the fetal and premature infant: Functional status and clinical implications, Clin. Perinatol. 31(2), 261–285 (2004)CrossRefGoogle Scholar
  190. [190]
    H. Varendi, R.H. Porter, J. Winberg: Does the newborn baby find the nipple by smell?, Lancet 344(8928), 989–990 (1994)CrossRefGoogle Scholar
  191. [191]
    M.J. Russell: Human olfactory communication, Nature 260(5551), 520–522 (1976)CrossRefGoogle Scholar
  192. [192]
    H. Varendi, R.H. Porter: Breast odour as the only maternal stimulus elicits crawling towards the odour source, Acta Paediatr. 90(4), 372–375 (2001)CrossRefGoogle Scholar
  193. [193]
    R.M. Sullivan, P. Toubas: Clinical usefulness of maternal odor in newborns: Soothing and feeding preparatory responses, Biol. Neonate 74(6), 402–408 (1998)CrossRefGoogle Scholar
  194. [194]
    K. Durand, J.Y. Baudouin, D.J. Lewkowicz, N. Goubet, B. Schaal: Eye-catching odors: Olfaction elicits sustained gazing to faces and eyes in 4-month-old infants, Plos One 8(8), e70677 (2013)CrossRefGoogle Scholar
  195. [195]
    R.H. Porter, J.M. Cernoch: Maternal recognition of neonates through olfactory cues, Physiol. Behav. 30(1), 151–154 (1983)CrossRefGoogle Scholar
  196. [196]
    M. Kaitz, A. Good, A.M. Rokem, A.I. Eidelman: Mothers recognition of their newborns by olfactory cues, Dev. Psychobiol. 20(6), 587–591 (1987)CrossRefGoogle Scholar
  197. [197]
    M.J. Russell, T. Mendelson, H.V.S. Peeke: Mother’s identification of their infant’s odors, Ethol. Sociobiol. 4(1), 29–31 (1983)CrossRefGoogle Scholar
  198. [198]
    J.N. Lundström, A. Mathe, B. Schaal, J. Frasnelli, K. Nitzsche, J. Gerber, T. Hummel: Maternal status regulates cortical responses to the body odor of newborns, Front. Psychol. (2013), doi:10.3389/Fpsyg.2013.00597Google Scholar
  199. [199]
    S. Nishitani, S. Kuwamoto, A. Takahira, T. Miyamura, K. Shinohara: Maternal prefrontal cortex activation by newborn infant odors, Chem. Senses 39(3), 195–202 (2014)CrossRefGoogle Scholar
  200. [200]
    B.S. McEwen: Physiology and neurobiology of stress and adaptation: Central role of the brain, Physiol. Rev. 87(3), 873–904 (2007)CrossRefGoogle Scholar
  201. [201]
    H. Selye: Stress in Health and Disease (Butterworths, Boston 1976)Google Scholar
  202. [202]
    G.S.B. Suh, A.M. Wong, A.C. Hergarden, J.W. Wang, A.F. Simon, S. Benzer, R. Axel, D.J. Anderson: A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila, Nature 431(7010), 854–859 (2004)CrossRefGoogle Scholar
  203. [203]
    K. von Frisch: Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung, Z. Vgl. Physiol. 29(1/2), 46–145 (1942)CrossRefGoogle Scholar
  204. [204]
    C. Zalaquett, D. Thiessen: The effects of odors from stressed mice on conspecific behavior, Physiol. Behav. 50(1), 221–227 (1991)CrossRefGoogle Scholar
  205. [205]
    M.S. Fanselow: Odors released by stressed rats produce opioid analgesia in unstressed rats, Behav. Neurosci. 99(3), 589–592 (1985)CrossRefGoogle Scholar
  206. [206]
    J.A. Moynihan, J.D. Karp, N. Cohen, R. Ader: Immune deviation following stress odor exposure: Role of endogenous opioids, J. Neuroimmunol. 102(2), 145–153 (2000)CrossRefGoogle Scholar
  207. [207]
    L.R. Mujica-Parodi, H.H. Strey, B. Frederick, R. Savoy, D. Cox, Y. Botanov, D. Tolkunov, D. Rubin, J. Weber: Chemosensory cues to conspecific emotional stress activate amygdala in humans, Plos One 4(7), e6415 (2009)CrossRefGoogle Scholar
  208. [208]
    R. Zernecke, K. Haegler, A.M. Kleemann, J. Albrecht, T. Frank, J. Linn, H. Bruckmann, M. Wiesmann: Effects of male anxiety chemosignals on the evaluation of happy facial expressions, J Psychophysiol 25(3), 116–123 (2011)CrossRefGoogle Scholar
  209. [209]
    K. Ackerl, M. Atzmueller, K. Grammer: The scent of fear, Neuroendocrinol. Lett. 23(2), 79–84 (2002)Google Scholar
  210. [210]
    D. Chen, J. Haviland-Jones: Human olfactory communication of emotion, Percept. Motor Skill. 91(3), 771–781 (2000)CrossRefGoogle Scholar
  211. [211]
    J.H.B. de Groot, M.A.M. Smeets, A. Kaldewaij, M.J.A. Duijndam, G.R. Semin: Chemosignals communicate human emotions, Psychol. Sci. 23(11), 1417–1424 (2012)CrossRefGoogle Scholar
  212. [212]
    B.M. Pause, A. Ohrt, A. Prehn, R. Ferstl: Positive emotional priming of facial affect perception in females is diminished by chemosensory anxiety signals, Chem. Senses 29(9), 797–805 (2004)CrossRefGoogle Scholar
  213. [213]
    B.M. Pause, K. Lübke, J.H. Laudien, R. Ferstl: Intensified neuronal investment in the processing of chemosensory anxiety signals in non-socially anxious and socially anxious individuals, Plos One 5(4), e10342 (2010)CrossRefGoogle Scholar
  214. [214]
    W. Zhou, D. Chen: Sociochemosensory and emotional functions: Behavioral evidence for shared mechanisms, Psychol. Sci. 20(9), 1118–1124 (2009)CrossRefGoogle Scholar
  215. [215]
    A. Prehn-Kristensen, C. Wiesner, T.O. Bergmann, S. Wolff, O. Jansen, H.M. Mehdorn, R. Ferstl, B.M. Pause: Induction of empathy by the smell of anxiety, Plos One 4(6), e5987 (2009)CrossRefGoogle Scholar
  216. [216]
    D. Adolph, L. Meister, B.M. Pause: Context counts! Social anxiety modulates the processing of fearful faces in the context of chemosensory anxiety signals, Front. Hum. Neurosci. (2013), doi:10.3389/Fnhum.2013.00283Google Scholar
  217. [217]
    D. Rubin, Y. Botanov, G. Hajcak, L.R. Mujica-Parodi: Second-hand stress: Inhalation of stress sweat enhances neural response to neutral faces, Soc. Cogn. Affect. Neurosci. 7(2), 208–212 (2012)CrossRefGoogle Scholar
  218. [218]
    B.M. Pause, D. Adolph, A. Prehn-Kristensen, R. Ferstl: Startle response potentiation to chemosensory anxiety signals in socially anxious individuals, Int. J. Psychophysiol. 74(2), 88–92 (2009)CrossRefGoogle Scholar
  219. [219]
    A. Prehn, A. Ohrt, B. Sojka, R. Ferstl, B.M. Pause: Chemosensory anxiety signals augment the startle reflex in humans, Neurosci. Lett. 394(2), 127–130 (2006)CrossRefGoogle Scholar
  220. [220]
    H. Inagaki, Y. Kiyokawa, T. Kikusui, Y. Takeuchi, Y. Mori: Enhancement of the acoustic startle reflex by an alarm pheromone in male rats, Physiol. Behav. 93(3), 606–611 (2008)CrossRefGoogle Scholar
  221. [221]
    H. Inagaki, K. Nakamura, Y. Kiyokawa, T. Kikusui, Y. Takeuchi, Y. Mori: The volatility of an alarm pheromone in male rats, Physiol. Behav. 96(4/5), 749–752 (2009)CrossRefGoogle Scholar
  222. [222]
    J. Albrecht, M. Demmel, V. Schöpf, A.M. Kleemann, R. Kopietz, J. May, T. Schreder, R. Zernecke, H. Brückmann, M. Wiesmann: Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects, Chem. Senses 36(1), 19–27 (2011)CrossRefGoogle Scholar
  223. [223]
    J. Havlicek, P. Lenochova: The effect of meat consumption on body odor attractiveness, Chem. Senses 31(8), 747–752 (2006)CrossRefGoogle Scholar
  224. [224]
    S. Mitro, A.R. Gordon, M.J. Olsson, J.N. Lundstrom: The smell of age: Perception and discrimination of body odors of different ages, Plos One 7(5), e38110 (2012)CrossRefGoogle Scholar
  225. [225]
    H. Arakawa, S. Cruz, T. Deak: From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states, Neurosci. Biobehav. Rev. 35(9), 1916–1928 (2011)CrossRefGoogle Scholar
  226. [226]
    E. Moser, M. McCulloch: Canine scent detection of human cancers: A review of methods and accuracy, J. Vet. Behav. 5(3), 145–152 (2010)CrossRefGoogle Scholar
  227. [227]
    G.B. Wintermann, M. Donix, P. Joraschky, J. Gerber, K. Petrowski: Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder, Plos One 8(9), e74655 (2013)CrossRefGoogle Scholar
  228. [228]
    M.B. Stein, D.J. Stein: Social anxiety disorder, Lancet 371(9618), 1115–1125 (2008)CrossRefGoogle Scholar
  229. [229]
    V. Parma, M. Bulgheroni, R. Tirindelli, U. Castiello: Body odors promote automatic imitation in autism, Biol. Psychiat. 74(3), 220–226 (2013)CrossRefGoogle Scholar
  230. [230]
    V. Parma, M. Bulgheroni, R. Tirindelli, U. Castiello: Facilitation of action planning in children with autism: The contribution of the maternal body odor, Brain Cogn. 88, 73–82 (2014)CrossRefGoogle Scholar
  231. [231]
    K.T. Lübke, I. Croy, M. Hoenen, J. Gerber, B.M. Pause, T. Hummel: Does human body odor represent a significant and rewarding social signal to individuals high in social openness?, Plos One 9(4), e94314 (2014)CrossRefGoogle Scholar
  232. [232]
    N.A. Christakis, J.H. Fowler: Friendship and natural selection, Proc. Natl. Acad. Sci. U.S.A. 111, 10796–10801 (2014), Suppl. 3CrossRefGoogle Scholar
  233. [233]
    J.D. Mainland, A. Keller, Y.R. Li, T. Zhou, C. Trimmer, L.L. Snyder, A.H. Moberly, K.A. Adipietro, W.L. LiuL: H.Y. Zhuang, S.M. Zhan, S.S. Lee, A. Lin, H. Matsunami: The missense of smell: Functional variability in the human odorant receptor repertoire, Nat. Neurosci. 17(1), 114–120 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Experimental PsychologyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations