Advertisement

Machine Olfaction

  • Brian Guthrie
Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

It has been a longstanding goal of many research groups to replicate human olfactory sense with instruments. Sensor technology aims not only to replace the traditional analytic methods that are mostly focused on individual chemical identification and quantitation, but also to predict the human perceptions of smell, odor recognition and odor hedonics, thus replacing human sensory evaluation. Sensors have progressed from early gas sensors, to e-noses and e-tongues to biosensors and bio-e-noses that utilize elements from natural signal transduction to gain better sensitivity and selectivity. There has recently been a rapid increase in research and development of advanced sensor technologies and enabling technologies such as nanotechnology, cellular biology, wireless communication, and neural computing methods that have helped overcome the sensitivity, selectivity, portability and recognition problems of early sensor systems. Much of this development comes in response to global bioterrorism and other security threats. The activities in the various areas enabled by machine olfaction are poised to impact many industries not only as potential enablers of competitive advantage, but also through international standards development and enforcement. However, while machine olfaction instruments and sensors systems have been under development for more than 30 years, they still cannot completely replace the human senses for sensitivity, selectivity, and speed. While complete replacement of human sensory perception is not yet possible, certain sensor arrays provide fast, cheap, portable, networkable, low-expertise alternatives in some applications where simple detection is required. Nevertheless, current machine olfaction devices can provide a low-sample preparation approach that significantly reduces the amount of human sensory and advanced chemical testing needed.

APCI

atmospheric pressure chemical ionization

APLI

atmospheric pressure laser ionization

CANN

cortical-based artificial neural network

DESI

desorption electrospray ionization

e-nose

electronic nose

EESI

extractive electrospray ionization

ELDI

electrospray-assisted laser desorption

FT

Fourier transform

GC

gas chromatography

HS

headspace

IMS

ion mobility spectrometry

IR

infrared

KSOM

Kohonen self-organizing map

LAB

lactic acid bacteria

LAESI

laser-assisted electrospray ionization

MALDI-ESI

matrix-assisted laser desorption electrospray ionization

MAP

modified atmosphere packaging

MOSFET

metal oxide semiconductor field effect transistors

MS

mass spectrometry

NMR

nuclear magnetic resonance

OBP

odor binding protein

ORN

olfactory receptor neuron

OR

olfactory receptor

ORP

olfactory receptor protein

PIB

polyisobutylene

PMMA

polymethylmethacrylate

PTR

proton transfer reaction

PUFA

polyunsaturated fatty acid

QC

quality control

SIFT

selected ion flow tube

SPME

solid phase micro extraction

VOC

volatile organic compound

VUV-SPI

vacuum ultraviolet single-photon ionization

References

  1. [1]
    S. Sankaran, L.R. Khot, S. Panigrahi: Biology and applications of olfactory sensing system: A review, Sens. Actuators B Chem. 171(172), 1–17 (2012)CrossRefGoogle Scholar
  2. [2]
    P.N. Bartlett, J.M. Elliott, J.W. Gardner: Applications of, and developments in, machine olfaction, Annali di Chimica 87(1/2), 33–44 (1997)Google Scholar
  3. [3]
    M.G. Madsen, R.D. Grypa: Spices, flavor systems, the electronic nose, Food Technol. 54(3), 44–46 (2000)Google Scholar
  4. [4]
    E.H. Oh, H.S. Song, T.H. Park: Recent advances in electronic and bioelectronic noses and their biomedical applications, Enzyme Microb. Technol. 48(6/7), 427–437 (2011)CrossRefGoogle Scholar
  5. [5]
    S. Bazzo, F. Loubet, T.T. Tan: Quality control of edible oil using and electronic nose, Semin. Food Anal. 3, 15–25 (1988)Google Scholar
  6. [6]
    P. Bandyopadhyay, M.T. Joseph: Quantification of in vitro malodor generation by anionic surfactant-induced fluorescent sensor property of tryptophan, Anal. Biochem. 397(1), 89–95 (2010)CrossRefGoogle Scholar
  7. [7]
    N. Alagirisamy, S.S. Hardas, S. Jayaraman: Novel colorimetric sensor for oral malodour, Anal. Chim. Acta 661(1), 97–102 (2010)CrossRefGoogle Scholar
  8. [8]
    L.B. Fay, I. Horman: Analytical chemistry in industrial food research, Chimia 51(10), 714–716 (1997)Google Scholar
  9. [9]
    F. Fenaille, P. Visani, R. Fumeaux, C. Milo, P.A. Guy: Comparison of mass spectrometry-based electronic nose and solid phase microextraction gas chromatography – mass spectrometry technique to assess infant formula oxidation, J. Agric. Food Chem. 51(9), 2790–2796 (2003)CrossRefGoogle Scholar
  10. [10]
    R. Dorfner, T. Ferge, C. Yeretzian, A. Kettrup, R. Zimmermann: Laser mass spectrometry as on-line sensor for industrial process analysis: Process control of coffee roasting, Anal. Chem. 76(5), 1386–1402 (2004)CrossRefGoogle Scholar
  11. [11]
    C. Yeretzian, A. Jordan, H. Brevard, W. Lindinger: Time-resolved headspace analysis by proton-transfer-reaction mass-spectrometry. In: Flavour Release, ACS Symp., Vol. 763, ed. by D.D. Roberts, A.J. Taylor (American Chemical Society, Washington, D.C. 2000) pp. 58–72CrossRefGoogle Scholar
  12. [12]
    P.A. Guy, F. Fenaille: Contribution of mass spectrometry to assess quality of milk-based products, Mass Spectrom. Rev. 25(2), 290–326 (2006)CrossRefGoogle Scholar
  13. [13]
    R. Mohamed, P.A. Guy: The pivotal role of mass spectrometry in determining the presence of chemical contaminants in food raw materials, Mass Spectr. Rev. 30(6), 1073–1095 (2011)CrossRefGoogle Scholar
  14. [14]
    C. Lindinger, P. Pollien, S. Ali, C. Yeretzian, I. Blank, T. Mark: Unambiguous identification of volatile organic compounds by proton-transfer reaction mass spectrometry coupled with GC/MS, Anal. Chem. 77(13), 4117–4124 (2005)CrossRefGoogle Scholar
  15. [15]
    S. Vauthey, P. Visani, P. Frossard, N. Garti, M.E. Leser, H.J. Watzke: Release of volatiles from cubic phases: Monitoring by gas sensors, J. Dispers. Sci. Technol. 21(3), 263–278 (2000)CrossRefGoogle Scholar
  16. [16]
    M. Frank, H. Ulmer, J. Ruiz, P. Visani, U. Weimar: Complementary analytical measurements based upon gas chromatography-mass spectrometry, sensor system and human sensory panel: A case study dealing with packaging materials, Anal. Chim. Acta 431(1), 11–29 (2001)CrossRefGoogle Scholar
  17. [17]
    P. Landy, S. Nicklaus, E. Semon, P. Mielle, E. Guichard: Representativeness of extracts of offset paper packaging and analysis of the main odor-active compounds, J. Agric. Food Chem. 52(8), 2326–2334 (2004)CrossRefGoogle Scholar
  18. [18]
    P. Mielle, P. Landy, M. Souchaud, E. Kleine-Benne, M. Blaschke, E. Guichard: Development of a thermodesorption sensor system for the detection of residual solvents in packaging materials, Proc. IEEE Sens. 1, 300–303 (2004)Google Scholar
  19. [19]
    C. Nicolas-Saint Denis, P. Visani, G. Trystram, J. Hossenlopp, R. Houdard: Faisability of off-flavour detection in cocoa liquors using gas sensors, Sciences des Aliments 21(5), 537–554 (2001)CrossRefGoogle Scholar
  20. [20]
    T.M. Dymerski, T.M. Chmiel, W. Wardencki: Invited review article: An odor-sensing system-powerful technique for foodstuff studies, Rev. Sci. Instrum. 82(11), 11101-1–32 (2011)CrossRefGoogle Scholar
  21. [21]
    R.L. Doty: Olfaction, Annu. Rev. Psychol. 52, 423–452 (2001)CrossRefGoogle Scholar
  22. [22]
    S. Firestein: How the olfactory system makes sense of scents, Nature 413(6852), 211–218 (2001)CrossRefGoogle Scholar
  23. [23]
    J. Krieger, H. Breer: Olfactory reception in invertebrates, Sci. 286(5440), 720–723 (1999)CrossRefGoogle Scholar
  24. [24]
    U. Stockhorst, R. Pietrowsky: Olfactory perception, communication, and the nose-to-brain pathway, Physiol. Behav. 83(1), 3–11 (2004)CrossRefGoogle Scholar
  25. [25]
    J.E. Cometto-Muniz: Chemical sensing in humans and machines. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  26. [26]
    R.L. Doty: Gustation, Wiley Interdiscip. Rev. Cogn. Sci. 3(1), 29–46 (2012)CrossRefGoogle Scholar
  27. [27]
    W. Meyerhof, S. Born, A. Brockhoff, M. Behrens: Molecular biology of mammalian bitter taste receptors. A review, Flavour Fragr. J. 26(4), 260–268 (2011)CrossRefGoogle Scholar
  28. [28]
    P. Besnard, D. Gaillard, P. Passilly-Degrace, C. Martin, M. Chevrot: Fat and taste perception, CAB Rev. Perspect. Agricult. Vet. Sci. Nutr. Nat. Res. 5(32), 1–9 (2010)Google Scholar
  29. [29]
    J.V. Verhagen: The neurocognitive bases of human multimodal food perception: Consciousness, Brain Res. Rev. 53(2), 271–286 (2007)CrossRefGoogle Scholar
  30. [30]
    J.V. Verhagen, L. Engelen: The neurocognitive bases of human multimodal food perception: Sensory integration, Neurosci. Biobehav. Rev. 30(5), 613–650 (2006)CrossRefGoogle Scholar
  31. [31]
    D.M. Small, M.G. Veldhuizen, B. Green: Sensory neuroscience: Taste responses in primary olfactory cortex, Current Biol. 23(4), R157–R159 (2013)CrossRefGoogle Scholar
  32. [32]
    M.G. Veldhuizen, D.R. Gitelman, D.M. Small: An fmri study of the interactions between the attention and the gustatory networks, Chemosens. Percept. 5(1), 117–127 (2012)CrossRefGoogle Scholar
  33. [33]
    E.P. Koster: Does olfactory memory depend on remembering odors?, Chem. Sens. 30, i236–i237 (2005)CrossRefGoogle Scholar
  34. [34]
    E. Le Berre, T. Thomas-Danguin, N. Beno, G. Coureaud, P. Etievant, J. Prescott: Perceptual processing strategy and exposure influence the perception of odor mixtures, Chem. Sens. 33(2), 193–199 (2008)CrossRefGoogle Scholar
  35. [35]
    M. Auvray, C. Spence: The multisensory perception of flavor, Conscious. Cogn. 17(3), 1016–1031 (2008)CrossRefGoogle Scholar
  36. [36]
    K. Mori, G.M. Shepherd: Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb, Semin. Cell Develop. Biol. 5(1), 65–74 (1994)CrossRefGoogle Scholar
  37. [37]
    E.A. Hallem, J.R. Carlson: Coding of odors by a receptor repertoire, Cell 125(1), 143–160 (2006)CrossRefGoogle Scholar
  38. [38]
    F. Rock, N. Barsan, U. Weimar: Electronic nose: Current status and future trends, Chem. Rev. 108(2), 705–725 (2008)CrossRefGoogle Scholar
  39. [39]
    K.J. Rossiter: Structure-odor relationships, Chem. Rev. 96(8), 3201–3240 (1996)CrossRefGoogle Scholar
  40. [40]
    D.J. Hoare, C.R. McCrohan, M. Cobb: Precise and fuzzy coding by olfactory sensory neurons, J. Neurosci. 28(39), 9710–9722 (2008)CrossRefGoogle Scholar
  41. [41]
    R. Haddad, H. Lapid, D. Harel, N. Sobel: Measuring smells, Curr. Opin. Neurobiol. 18(4), 438–444 (2008)CrossRefGoogle Scholar
  42. [42]
    S. Zampolli, I. Elmi, J. Stürmann, S. Nicoletti, L. Dori, G.C. Cardinali: Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column, Sens. Actuators B Chem. 105(2), 400–406 (2005)CrossRefGoogle Scholar
  43. [43]
    H. Lin, J.W. Zhao, Q.S. Chen, J.R. Cai, P. Zhou: Identification of egg freshness using near infrared spectroscopy and one class support vector machine algorithm, Spectrosc. Spectral Anal. 30(4), 929–932 (2010)Google Scholar
  44. [44]
    H. Nanto, J.R. Stetter: Introduction to chemosensors. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  45. [45]
    K. Arshak, E. Moore, G.M. Lyons, J. Harris, S. Clifford: A review of gas sensors employed in electronic nose applications, Sensor Rev. 24(2), 181–198 (2004)CrossRefGoogle Scholar
  46. [46]
    K.J. Albert, N.S. Lewis, C.L. Schauer, G.A. Sotzing, S.E. Stitzel, T.P. Vaid, D.R. Walt: Cross-reactive chemical sensor arrays, Chem. Rev. 100(7), 2595–2626 (2000)CrossRefGoogle Scholar
  47. [47]
    S.M. Briglin, M.S. Freund, P. Tokumaru, N.S. Lewis: Exploitation of spatiotemporal information and geometric optimization of signal/noise performance using arrays of carbon black-polymer composite vapor detectors, Sens. Actuators B Chem. 82(1), 54–74 (2002)CrossRefGoogle Scholar
  48. [48]
    T. Gao, E.S. Tillman, N.S. Lewis: Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors, Chem. Mater. 17(11), 2904–2911 (2005)CrossRefGoogle Scholar
  49. [49]
    N.S. Lewis: Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors, Acc. Chem. Res. 37(9), 663–672 (2004)CrossRefGoogle Scholar
  50. [50]
    B.C. Sisk, N.S. Lewis: Estimation of chemical and physical characteristics of analyte vapors through analysis of the response data of arrays of polymer-carbon black composite vapor detectors, Sens. Actuators B Chem. 96(1/2), 268–282 (2003)CrossRefGoogle Scholar
  51. [51]
    H. Smyth, D. Cozzolino: Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: Advantages and limitations, Chem. Rev. 113(3), 1429–1440 (2013)CrossRefGoogle Scholar
  52. [52]
    E.A. Baldwin, J. Bai, A. Plotto, S. Dea: Electronic noses and tongues: Applications for the food and pharmaceutical industries, Sensors 11(5), 4744–4766 (2011)CrossRefGoogle Scholar
  53. [53]
    A. Berna: Metal oxide sensors for electronic noses and their application to food analysis, Sensors 10(4), 3882–3910 (2010)CrossRefGoogle Scholar
  54. [54]
    M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M. Siadat: Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements, J. Food Eng. 100(3), 377–387 (2010)CrossRefGoogle Scholar
  55. [55]
    A.K. Deisingh, D.C. Stone, M. Thompson: Applications of electronic noses and tongues in food analysis, Int. J. Food Sci. Technol. 39(6), 587–604 (2004)CrossRefGoogle Scholar
  56. [56]
    E. Schaller, J.O. Bosset, F. Escher: ’Electronic noses’ and their application to food, LWT – Food Sci. Technol. 31(4), 305–316 (1998)CrossRefGoogle Scholar
  57. [57]
    J. E. Haugen, K. Kvaal: Electronic nose and artificial neural network, Meat Sci. 49, 5273–5286 (1998) suppl. 1 Google Scholar
  58. [58]
    P.N. Bartlett, J.M. Elliott, J.W. Gardner: Electronic noses and their application in the food industry, Food Technol. 51(12), 44–48 (1997)Google Scholar
  59. [59]
    A.D. Wilson: Diverse applications of electronic-nose technologies in agriculture and forestry, Sensors (Switzerland) 13(2), 2295–2348 (2013)CrossRefGoogle Scholar
  60. [60]
    M. Ruiz-Altisent, L. Ruiz-Garcia, G.P. Moreda, R. Lu, N. Hernandez-Sanchez, E.C. Correa, B. Diezma, B. Nicolas, J. Garcia-Ramos: Sensors for product characterization and quality of specialty crops-a review, Comput. Electron. Agricult. 74(2), 176–194 (2010)CrossRefGoogle Scholar
  61. [61]
    D.R. Walt, S.E. Stitzel, M.J. Aernecke: Artificial noses, Am. Sci. 100(1), 38–45 (2012)Google Scholar
  62. [62]
    S.E. Stitzel, M.J. Aernecke, D.R. Walt: Artificial noses, Annu. Rev. Biomed. Eng. 13, 1–25 (2011)CrossRefGoogle Scholar
  63. [63]
    M. Brattoli, G. de Gennaro, V. de Pinto, A.D. Loiotile, S. Lovascio, M. Penza: Odour detection methods: Olfactometry and chemical sensors, Sensors 11(5), 5290–5322 (2011)CrossRefGoogle Scholar
  64. [64]
    A.D. Wilson, M. Baietto: Applications and advances in electronic-nose technologies, Sensors 9(7), 5099–5148 (2009)CrossRefGoogle Scholar
  65. [65]
    D. James, S.M. Scott, Z. Ali, W.T. O’Hare: Chemical sensors for electronic nose systems, Microchimica Acta 149(1/2), 1–17 (2005)CrossRefGoogle Scholar
  66. [66]
    B.A. Snopok, I.V. Kruglenko: Multisensor systems for chemical analysis: State-of-the-art in electronic nose technology and new trends in machine olfaction, Thin Solid Films 418(1), 21–41 (2002)CrossRefGoogle Scholar
  67. [67]
    D.J. Strike, M.G.H. Meijerink, M. Koudelka-Hep: Electronic noses – a mini-review, Fresenius’ J. Anal. Chem. 364(6), 499–505 (1999)CrossRefGoogle Scholar
  68. [68]
    T.A. Dickinson, J. White, J.S. Kauer, D.R. Walt: Current trends in ’artificial-nose’ technology, Trends Biotechnol. 16(6), 250–258 (1998)CrossRefGoogle Scholar
  69. [69]
    M. Jamal, M.R. Khan, S.A. Imam, A. Jamal: Artificial neural network based e-nose and their analytical applications in various field, Proc. 11th ICARCV (2010) pp. 691–698Google Scholar
  70. [70]
    M.D. Woodka, B.S. Brunschwig, N.S. Lewis: Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures, Langmuir 23(26), 13232–13241 (2007)CrossRefGoogle Scholar
  71. [71]
    J.W. Gardner, J.A. Covington, S.L. Tan, T.C. Pearce: Towards an artificial olfactory mucosa for improved odour classification, Proc. R. Soc. A Math. Phys. Eng. Sci. 463(2083), 1713–1728 (2007)CrossRefGoogle Scholar
  72. [72]
    S.E. Stitzel, D.R. Stein, D.R. Walt: Enhancing vapor sensor discrimination by mimicking a canine nasal cavity flow environment, J. Am. Chem. Soc. 125(13), 3684–3685 (2003)CrossRefGoogle Scholar
  73. [73]
    Z. Wen, L. Tian-mo: Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism, Phys. B Condens. Matter 405(5), 1345–1348 (2010)CrossRefGoogle Scholar
  74. [74]
    N. El Barbri, E. Llobet, N. El Bari, X. Correig, B. Bouchikhi: Application of a portable electronic nose system to assess the freshness of moroccan sardines, Mater. Sci. Eng. C 28(5/6), 666–670 (2008)CrossRefGoogle Scholar
  75. [75]
    P.C. Chen, F.N. Ishikawa, H.K. Chang, K. Ryu, C. Zhou: A nanoelectronic nose: A hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination, Nanotechnol. 20(12), 125503 (2009)CrossRefGoogle Scholar
  76. [76]
    V. Krivetsky, A. Ponzoni, E. Comini, M. Rumyantseva, A. Gaskov: Selective modified sno2-based materials for gas sensors arrays, Procedia Chemistry 1, 204–207 (2009)CrossRefGoogle Scholar
  77. [77]
    P.C. Chen, G. Shen, C. Zhou: Chemical sensors and electronic noses based on 1-d metal oxide nanostructures, IEEE Trans. Nanotechnol. 7(6), 668–682 (2008)CrossRefGoogle Scholar
  78. [78]
    G.V. Belkova, S.A. Zav’yalov, N.N. Glagolev, A.B. Solov’eva: The influence of zno-sensor modification by porphyrins on to the character of sensor response to volatile organic compounds, Russ. J. Phys. Chem. A 84(1), 129–133 (2010)CrossRefGoogle Scholar
  79. [79]
    M. Egashira, Y. Shimizu: Odor sensing by semiconductor metal oxides, Sens. Actuators B. Chem. 13(1–3), 443–446 (1993)CrossRefGoogle Scholar
  80. [80]
    J. Lozano, J.P. Santos, M. Aleixandre, I. Sayago, J. Gutierrez, M.C. Horrillo: Identification of typical wine aromas by means of an electronic nose, IEEE Sens. J. 6(1), 173–178 (2006)CrossRefGoogle Scholar
  81. [81]
    J. Lozano, M.J. Fernandez, J.L. Fontecha, M. Aleixandre, J.P. Santos, I. Sayago, T. Arroyo, J.M. Cabellos, F.J. Gutierrez, M.C. Horrillo: Wine classification with a zinc oxide saw sensor array, Sens. Actuators B Chem. 120(1), 166–171 (2006)CrossRefGoogle Scholar
  82. [82]
    A. Hikerlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, New York 2005)Google Scholar
  83. [83]
    S. Park, H.J. Lee, W.G. Koh: Multiplex immunoassay platforms based on shape-coded poly(ethylene glycol) hydrogel microparticles incorporating acrylic acid, Sensors (Switzerland) 12(6), 8426–8436 (2012)CrossRefGoogle Scholar
  84. [84]
    B. Adhikari, S. Majumdar: Polymers in sensor applications, Prog. Polym. Sci. (Oxford) 29(7), 699–766 (2004)CrossRefGoogle Scholar
  85. [85]
    H. Bai, G. Shi: Gas sensors based on conducting polymers, Sensors 7(3), 267–307 (2007)CrossRefGoogle Scholar
  86. [86]
    K.C. Persaud: Polymers for chemical sensing, Mater. Today 8(4), 38–44 (2005)CrossRefGoogle Scholar
  87. [87]
    H.S. Yim, C.E. Kibbey, S.C. Ma, D.M. Kliza, D. Liu, S.B. Park, C.E. Torre, M.E. Meyerhoff: Polymer membrane-based ion-, gas- and bio-selective potentiometric sensors, Biosens. Bioelectr. 8(1), 1–38 (1993)CrossRefGoogle Scholar
  88. [88]
    M.L. Rodriguez-Mendez, M. Gay, J.A. De Saja: New insights into sensors based on radical bisphthalocyanines, J. Porphyr. Phthalocyanines 13(11), 1159–1167 (2009)CrossRefGoogle Scholar
  89. [89]
    V. Parra, A.A. Arrieta, J.A. Fernandez-Escudero, H. Garcia, C. Apetrei, M.L. Rodriguez-Mendez: J. A. d. Saja: E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability towards red wines elaborated with different varieties of grapes, Sens. Actuators B Chem. 115(1), 54–61 (2006)CrossRefGoogle Scholar
  90. [90]
    M.L. Rodriguez-Mendez, J. Antonio De Saja: Nanostructured thin films based on phthalocyanines: Electro chromic displays and sensors, J. Porphyr. Phthalocyanines 13(4/5), 606–615 (2009)CrossRefGoogle Scholar
  91. [91]
    B. Li, S. Santhanam, L. Schultz, M. Jeffries-El, M.C. Iovu, G. Sauve, J. Cooper, R. Zhang, J.C. Revelli, A.G. Kusne, J.L. Snyder, T. Kowalewski, L.E. Weiss, R.D. McCullough, G.K. Fedder, D.N. Lambeth: Inkjet printed chemical sensor array based on polythiophene conductive polymers, Sens. Actuators B Chem. 123(2), 651–660 (2007)CrossRefGoogle Scholar
  92. [92]
    M.C. Lonergan, E.J. Severin, B.J. Doleman, S.A. Beaber, R.H. Grubbs, N.S. Lewis: Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors, Chem. Mater. 8(9), 2298–2312 (1996)CrossRefGoogle Scholar
  93. [93]
    S. Maldonado, E. Garcia-Berrios, M.D. Woodka, B.S. Brunschwig, N.S. Lewis: Detection of organic vapors and nh3(g) using thin-film carbon black-metallophthalocyanine composite chemiresistors, Sens. Actuators B Chem. 134(2), 521–531 (2008)CrossRefGoogle Scholar
  94. [94]
    S. Brady, K.T. Lau, W. Megill, G.G. Wallace, D. Diamond: The development and characterisation of conducting polymeric-based sensing devices, Synth. Met. 154(1–3), 25–28 (2005)CrossRefGoogle Scholar
  95. [95]
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wires as chemical sensors, Science 287(5453), 622–625 (2000)CrossRefGoogle Scholar
  96. [96]
    D. Sarkar, K. Banerjee: Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors, Appl. Phys. Lett. 100(14), 143108 (2012)CrossRefGoogle Scholar
  97. [97]
    E.S. Snow, F.K. Perkins, J.A. Robinson: Chemical vapor detection using single-walled carbon nanotubes, Chem. Soc. Rev. 35(9), 790–798 (2006)CrossRefGoogle Scholar
  98. [98]
    B. Philip, J.K. Abraham, A. Chandrasekhar, V.K. Varadan: Carbon nanotube/pmma composite thin films for gas-sensing applications, Smart Mater. Struct. 12(6), 935–939 (2003)CrossRefGoogle Scholar
  99. [99]
    A. Star, V. Joshi, S. Skarupo, D. Thomas, J.C.P. Gabriel: Gas sensor array based on metal-decorated carbon nanotubes, J. Physical Chem. B 110(42), 21014–21020 (2006)CrossRefGoogle Scholar
  100. [100]
    E.S. Tillman, N.S. Lewis: Mechanism of enhanced sensitivity of linear poly(ethylenimine)-carbon black composite detectors to carboxylic acid vapors, Sens. Actuat. B Chem. 96(1/2), 329–342 (2003)CrossRefGoogle Scholar
  101. [101]
    E.S. Tillman, M.E. Koscho, R.H. Grubbs, N.S. Lewis: Enhanced sensitivity to and classification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbon black composite vapor detectors, Anal. Chem. 75(7), 1748–1753 (2003)CrossRefGoogle Scholar
  102. [102]
    S. Casilli, M. De Luca, C. Apetrei, V. Parra, A.A. Arrieta, L. Valli, J. Jiang, M.L. Rodriguez-Mandez, J.A. De Saja: Langmuir-blodgett and langmuir-schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors: Applications to the study of antioxidants, Appl. Surf. Sci. 246(4), 304–312 (2005)CrossRefGoogle Scholar
  103. [103]
    J.D.N. Cheeke, Z. Wang: Acoustic wave gas sensors, Sens. Actuators B Chem. 59(2), 146–153 (1999)CrossRefGoogle Scholar
  104. [104]
    B. Drafts: Acoustic wave technology sensors, IEEE Trans. Microw. Theory Tech. 49(4 II), 795–802 (2001)CrossRefGoogle Scholar
  105. [105]
    W.P. Carey, K.R. Beebe, B.R. Kowalski, D.L. Illman, T. Hirschfeld: Selection of adsorbates for chemical sensor arrays by pattern recognition, Anal. Chem. 58(1), 149–153 (1986)CrossRefGoogle Scholar
  106. [106]
    P. Si, J. Mortensen, A. Komolov, J. Denborg, P.J. Moller: Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures, Anal. Chim. Acta 597(2), 223–230 (2007)CrossRefGoogle Scholar
  107. [107]
    N. Iqbal, G. Mustafa, A. Rehman, A. Biedermann, B. Najafi, P.A. Lieberzeit, F.L. Dickert: Qcm-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic mip layers, Sensors 10(7), 6361–6376 (2010)CrossRefGoogle Scholar
  108. [108]
    S.K. Jha, R.D.S. Yadava: Statistical pattern analysis assisted selection of polymers for odor sensor array, Proc. Int Conf. Sig. Process. Commun. Comput. Netw. (ICSCCN) (2011) pp. 575–580Google Scholar
  109. [109]
    J.W. Grate, S.J. Patrash, M.H. Abraham: Method for estimating polymer-coated acoustic wave vapor sensor responses, Analyt. Chem. 67(13), 2162–2169 (1995)CrossRefGoogle Scholar
  110. [110]
    T. Moriizumi: Langmuir-blodgett films as chemical sensors, Thin Solid Films 160(1/2), 413–429 (1988)CrossRefGoogle Scholar
  111. [111]
    E.A. Wachter, T. Thundat, P.I. Oden, R.J. Warmack, P.G. Datskos, S.L. Sharp: Remote optical detection using microcantilevers, Rev. Sci. Instruments 67(10), 3434–3439 (1996)CrossRefGoogle Scholar
  112. [112]
    T. Thundat, G.Y. Chen, R.J. Warmack, D.P. Allison, E.A. Wachter: Vapor detection using resonating microcantilevers, Anal. Chem. 67(3), 519–521 (1995)CrossRefGoogle Scholar
  113. [113]
    H.P. Lang, M.K. Baller, R. Berger, C. Gerber, J.K. Gimzewski, F.M. Battiston, P. Fornaro, J.P. Ramseyer, E. Meyer, H.J. Guntherodt: An artificial nose based on a micromechanical cantilever array, Anal. Chim. Acta 393(1–3), 59–65 (1999)CrossRefGoogle Scholar
  114. [114]
    T.A. Betts, C.A. Tipple, M.J. Sepaniak, P.G. Datskos: Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films, Anal. Chim. Acta 422(1), 89–99 (2000)CrossRefGoogle Scholar
  115. [115]
    J. Amamcharla, S. Panigrahi: Simultaneous prediction of acetic acid/ethanol concentrations in their binary mixtures using metalloporphyrin based opto-electronic nose for meat safety applications, Sens. Instrum. Food Qual. Safety 4(2), 51–60 (2010)CrossRefGoogle Scholar
  116. [116]
    A.C. Paske, L.D. Earl, J.L. O’Donnell: Interfacially polymerized metalloporphyrin thin films for colorimetric sensing of organic vapors, Sens. Actuators B Chem. 155(2), 687–691 (2011)CrossRefGoogle Scholar
  117. [117]
    L.D. Bonifacio, G.A. Ozin, A.C. Arsenault: The photonic nose: A versatile platform for sensing applications, Proc. SPIE – Int. Soc. Opt. Eng., Vol. 8031 (2011), DOI:  10.1117/12.884129 Google Scholar
  118. [118]
    M.C. Janzen, J.B. Ponder, D.P. Bailey, C.K. Ingison, K.S. Suslick: Colorimetric sensor arrays for volatile organic compounds, Analytical Chemistry 78(11), 3591–3600 (2006)CrossRefGoogle Scholar
  119. [119]
    N.A. Rakow, K.S. Suslick: A colorimetric sensor array for odour visualization, Nature 406(6797), 710–713 (2000)CrossRefGoogle Scholar
  120. [120]
    K.S. Suslick, D.P. Bailey, C.K. Ingison, M. Janzen, M.E. Kosal, W.B. McNamara Iii, N.A. Rakow, A. Sen, J.J. Weaver, J.B. Wilson, C. Zhang, S. Nakagaki: Seeing smells: Development of an optoelectronic nose, Quimica Nova 30(3), 677–681 (2007)CrossRefGoogle Scholar
  121. [121]
    H. Qin, D. Huo, L. Zhang, L. Yang, S. Zhang, M. Yang, C. Shen, C. Hou: Colorimetric artificial nose for identification of chinese liquor with different geographic origins, Food Res. Int. 45(1), 45–51 (2012)CrossRefGoogle Scholar
  122. [122]
    T.A. Dickinson, J. White, J.S. Kauer, D.R. Walt: A chemical-detecting system based on a cross-reactive optical sensor array, Nature 382(6593), 697–700 (1996)CrossRefGoogle Scholar
  123. [123]
    H.E. Posch, O.S. Wolfbeis, J. Pusterhofer: Optical and fibre-optic sensors for vapours of polar solvents, Talanta 35(2), 89–94 (1988)CrossRefGoogle Scholar
  124. [124]
    E. Chevallier, E. Scorsone, H.A. Girard, V. Pichot, D. Spitzer, P. Bergonzo: Metalloporphyrin-functionalised diamond nano-particles as sensitive layer for nitroaromatic vapours detection at room-temperature, Sens. Actuators B Chem. 151(1), 191–197 (2010)CrossRefGoogle Scholar
  125. [125]
    S.E. Stitzel, L.J. Cowen, K.J. Albert, D.R. Walt: Array-to-array transfer of an artificial nose classifier, Anal. Chem. 73(21), 5266–5271 (2001)CrossRefGoogle Scholar
  126. [126]
    S. Bencic-Nagale, D.R. Walt: Extending the longevity of fluorescence-based sensor arrays using adaptive exposure, Anal. Chem. 77(19), 6155–6162 (2005)CrossRefGoogle Scholar
  127. [127]
    J. White, J.S. Kauer, T.A. Dickinson, D.R. Walt: Rapid analyte recognition in a device based on optical sensors and the olfactory system, Anal. Chem. 68(13), 2191–2202 (1996)CrossRefGoogle Scholar
  128. [128]
    K.J. Albert, D.R. Walt: Information coding in artificial olfaction multisensor arrays, Anal. Chem. 75(16), 4161–4167 (2003)CrossRefGoogle Scholar
  129. [129]
    S.M. Barnard, D.R. Walt: Fiber-optic organic vapor sensor, Environ. Sci. Technol. 25(7), 1301–1304 (1991)CrossRefGoogle Scholar
  130. [130]
    M. Peris, L. Escuder-Gilabert: A 21st century technique for food control: Electronic noses, Anal. Chim. Acta 638(1), 1–15 (2009)CrossRefGoogle Scholar
  131. [131]
    L. Vera, L. Aceia, J. Guasch, R. Boqua, M. Mestres, O. Busto: Characterization and classification of the aroma of beer samples by means of an ms e-nose and chemometric tools, Anal. Bioanal. Chem. 399(6), 2073–2081 (2011)CrossRefGoogle Scholar
  132. [132]
    H. Kojima, S. Araki, H. Kaneda, M. Takashio: Application of a new electronic nose with fingerprint mass spectrometry to brewing, J. Am. Soc. Brew. Chem. 63(4), 151–157 (2005)Google Scholar
  133. [133]
    F.M. Green, T.L. Salter, P. Stokes, I.S. Gilmore, G. O’Connorb: Ambientmass spectrometry: Advances and applications in forensics, Surf. Interf.Anal. 42(5), 347–357 (2010)CrossRefGoogle Scholar
  134. [134]
    F. Biasioli, C. Yeretzian, T.D. Mark, J. Dewulf, H. Van Langenhove: Direct-injection mass spectrometry adds the time dimension to (b)voc analysis, TrAC – Trends Anal. Chem. 30(7), 1003–1017 (2011)CrossRefGoogle Scholar
  135. [135]
    K. Chughtai, R.M.A. Heeren: Mass spectrometric imaging for biomedical tissue analysis, Chem. Rev. 110(5), 3237–3277 (2010)CrossRefGoogle Scholar
  136. [136]
    E.R. Amstalden van Hove, D.F. Smith, R.M.A. Heeren: A concise review of mass spectrometry imaging, J. Chromatogr. A 1217(25), 3946–3954 (2010)CrossRefGoogle Scholar
  137. [137]
  138. [138]
    JEOL, IonSense: http://www.ionsense.com/
  139. [139]
    W. Vautz, D. Zimmermann, M. Hartmann, J.I. Baumbach, J. Nolte, J. Jung: Ion mobility spectrometry for food quality and safety, Food Addit. Contamin. 23(11), 1064–1073 (2006)CrossRefGoogle Scholar
  140. [140]
    L.C. Rorrer Iii, R.A. Yost: Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry, Int. J. Mass Spectrom. 300(2/3), 173–181 (2011)CrossRefGoogle Scholar
  141. [141]
    R. Guevremont: High-field asymmetric waveform ion mobility spectrometry (faims), Can. J. Anal. Sci. Spectrosc. 49(3), 105–113 (2004)Google Scholar
  142. [142]
    R. Guevremont: High-field asymmetric waveform ion mobility spectrometry: A new tool for mass spectrometry, J. Chromatogr. A 1058(1/2), 3–19 (2004)CrossRefGoogle Scholar
  143. [143]
  144. [144]
    R.T. Marsili: SPME-MS-MVA as a rapid technique for assessing oxidation off-flavors in foods, Adv. Exp. Med. Biol. 488, 89–100 (2001)CrossRefGoogle Scholar
  145. [145]
    J.W. Gardner, M. Cole: Integrated electronic noses and microsystems for chemical analysis. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  146. [146]
    E.J. Staples, S. Viswanathan: Development of a novel odor measurement system using gas chromatography with surface acoustic wave sensor, J. Air Waste Manag. Assoc. 58(12), 1522–1528 (2008)CrossRefGoogle Scholar
  147. [147]
    C. Mah, K.B. Thurbide: Acoustic methods of detection in gas chromatography, J. Sep. Sci. 29(12), 1922–1930 (2006)CrossRefGoogle Scholar
  148. [148]
    S.Y. Oh, H.D. Shin, S.J. Kim, J. Hong: Rapid determination of floral aroma compounds of lilac blossom by fast gas chromatography combined with surface acoustic wave sensor, J. Chromatogr. A 1183(1/2), 170–178 (2008)CrossRefGoogle Scholar
  149. [149]
    Electronic Sensor Technology: http://www.estcal.com/
  150. [150]
    T.A.T.G. Van Kempen, W.J. Powers, A.L. Sutton: Technical note: Fourier transform infrared (FTIR) spectroscopy as an optical nose for predicting odor sensation, J. Animal Sci. 80(6), 1524–1527 (2002)CrossRefGoogle Scholar
  151. [151]
    S. Armenta, N.M.M. Coelho, R. Roda, S. Garrigues, M. de la Guardia: Seafood freshness determination through vapour phase fourier transform infrared spectroscopy, Anal. Chim. Acta 580(2), 216–222 (2006)CrossRefGoogle Scholar
  152. [152]
    D. Cozzolino, H.E. Smyth, M. Gishen: Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins, J. Agricult. Food Chem. 51(26), 7703–7708 (2003)CrossRefGoogle Scholar
  153. [153]
    J.H.J. Al Yamani, F. Boussaid, A. Bermak, D. Martinez: Bio-inspired gas recognition based on the organization of the olfactory pathway, Proc. IEEE Int. Symp. Circuits Syst. (ISCAS) (2012) pp. 1391–1394Google Scholar
  154. [154]
    R.R. Lima, L.F. Hernandez, A.T. Carvalho, R.A.M. Carvalho, M.L.P. da Silva: Corrosion resistant and adsorbent plasma polymerized thin film, Sens. Actuators B Chem. 141(2), 349–360 (2009)CrossRefGoogle Scholar
  155. [155]
    K.D. Shimizu, C.J. Stephenson: Molecularly imprinted polymer sensor arrays, Current Opin. Chem. Biol. 14(6), 743–750 (2010)CrossRefGoogle Scholar
  156. [156]
    G. Bunte, J. Hurttlen, H. Pontius, K. Hartlieb, H. Krause: Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers, Analytica Chimica Acta 591(1), 49–56 (2007)CrossRefGoogle Scholar
  157. [157]
    M. Matsuguchi, T. Uno: Molecular imprinting strategy for solvent molecules and its application for qcm-based voc vapor sensing, Sens. Actuators B Chem. 113(1), 94–99 (2006)CrossRefGoogle Scholar
  158. [158]
    F.L. Dickert, O. Hayden, K.P. Halikias: Synthetic receptors as sensor coatings for molecules and living cells, Analyst 126(6), 766–771 (2001)CrossRefGoogle Scholar
  159. [159]
    T. Nakamoto: Odor handling and delivery systems. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  160. [160]
    L. Su, W. Jia, C. Hou, Y. Lei: Microbial biosensors: A review, Biosens. Bioelectron. 26(5), 1788–1799 (2011)CrossRefGoogle Scholar
  161. [161]
    J. Castillo, S. Gaspar, S. Leth, M. Niculescu, A. Mortari, I. Bontidean, V. Soukharev, S.A. Dorneanu, A.D. Ryabov, E. Csoregi: Biosensors for life quality – Design, development and applications, Sens. Actuators B Chem. 102(2), 179–194 (2004)CrossRefGoogle Scholar
  162. [162]
    P. Leonard, S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, R. O’Kennedy: Advances in biosensors for detection of pathogens in food and water, Enzyme Microb. Technol. 32(1), 3–13 (2003)CrossRefGoogle Scholar
  163. [163]
    A. Rasooly, K.E. Herold: Biosensors for the analysis of food- and waterborne pathogens and their toxins, J. AOAC Int. 89(3), 873–883 (2006)Google Scholar
  164. [164]
    M. Nayak, A. Kotian, S. Marathe, D. Chakravortty: Detection of microorganisms using biosensors-a smarter way towards detection techniques, Biosens. Bioelectron. 25(4), 661–667 (2009)CrossRefGoogle Scholar
  165. [165]
    Y. Wang, Z. Ye, Y. Ying: New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria, Sensors 12(3), 3449–3471 (2012)CrossRefGoogle Scholar
  166. [166]
    V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, C. Adley: An overview of foodborne pathogen detection: In the perspective of biosensors, Biotechnol. Adv. 28(2), 232–254 (2010)CrossRefGoogle Scholar
  167. [167]
    O. Lazcka, F.J.D. Campo, F.X. Munoz: Pathogen detection: A perspective of traditional methods and biosensors, Biosens. Bioelectron. 22(7), 1205–1217 (2007)CrossRefGoogle Scholar
  168. [168]
    K.K. Jain: Current status of molecular biosensors, Med. Dev. Technol. 14(4), 10–15 (2003)Google Scholar
  169. [169]
    A. Amine, H. Mohammadi, I. Bourais, G. Palleschi: Enzyme inhibition-based biosensors for food safety and environmental monitoring, Biosens. Bioelectron. 21(8), 1405–1423 (2006)CrossRefGoogle Scholar
  170. [170]
    L.D. Mello, L.T. Kubota: Review of the use of biosensors as analytical tools in the food and drink industries, Food Chem. 77(2), 237–256 (2002)CrossRefGoogle Scholar
  171. [171]
    M.N. Velasco-Garcia, T. Mottram: Biosensor technology addressing agricultural problems, Biosyst. Eng. 84(1), 1–12 (2003)CrossRefGoogle Scholar
  172. [172]
    P.D. Skottrup, M. Nicolaisen, A.F. Justesen: Towards on-site pathogen detection using antibody-based sensors, Biosens. Bioelectron. 24(3), 339–348 (2008)CrossRefGoogle Scholar
  173. [173]
    M. Mujika, S. Arana, E. Castano, M. Tijero, R. Vilares, J.M. Ruano-Lopez, A. Cruz, L. Sainz, J. Berganza: Magnetoresistive immunosensor for the detection of escherichia coli o157:H7 including a microfluidic network, Biosens. Bioelectron. 24(5), 1253–1258 (2009)CrossRefGoogle Scholar
  174. [174]
    P.J. Liao, J.S. Chang, S.D. Chao, H.C. Chang, K.R. Huang, K.C. Wu, T.S. Wung: A combined experimental and theoretical study on the immunoassay of human immunoglobulin using a quartz crystal microbalance, Sensors (Basel, Switzerland) 10(12), 11498–11511 (2010)CrossRefGoogle Scholar
  175. [175]
    A.M. Azevedo, D.M.F. Prazeres, J.M.S. Cabral, L.P. Fonseca: Ethanol biosensors based on alcohol oxidase, Biosens. Bioelectron. 21(2), 235–247 (2005)CrossRefGoogle Scholar
  176. [176]
    M. Moyo, J.O. Okonkwo, N.M. Agyei: Recent advances in polymeric materials used as electron mediators and immobilizing matrices in developing enzyme electrodes, Sensors 12(1), 923–953 (2012)CrossRefGoogle Scholar
  177. [177]
    J.M. Vidic, J. Grosclaude, M.A. Persuy, J. Aioun, R. Salesse, E. Pajot-Augy: Quantitative assessment of olfactory receptors activity in immobilized nanosomes: A novel concept for bioelectronic nose, Lab on a Chip – Miniaturisation, Chem. Biol. 6(8), 1026–1032 (2006)Google Scholar
  178. [178]
    Q. Liu, W. Ye, H. Yu, N. Hu, L. Du, P. Wang, M. Yang: Olfactory mucosa tissue-based biosensor: A bioelectronic nose with receptor cells in intact olfactory epithelium, Sens. Actuators B Chem. 146(2), 527–533 (2010)CrossRefGoogle Scholar
  179. [179]
    Q. Liu, W. Ye, N. Hu, H. Cai, H. Yu, P. Wang: Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip, Biosens. Bioelectron. 26(4), 1672–1678 (2010)CrossRefGoogle Scholar
  180. [180]
    V. Radhika, T. Proikas-Cezanne, M. Jayaraman, D. Onesime, J.H. Ha, D.N. Dhanasekaran: Chemical sensing of dnt by engineered olfactory yeast strain, Nat. Chem. Biol. 3(6), 325–330 (2007)CrossRefGoogle Scholar
  181. [181]
    S.F. D’Souza: Microbial biosensors, Biosens. Bioelectron. 16(6), 337–353 (2001)CrossRefGoogle Scholar
  182. [182]
    Y. Kuang, I. Biran, D.R. Walt: Living bacterial cell array for genotoxin monitoring, Anal. Chem. 76(10), 2902–2909 (2004)CrossRefGoogle Scholar
  183. [183]
    E. Shirokova, K. Schmiedeberg, P. Bedner, H. Niessen, K. Willecke, J.D. Raguse, W. Meyerhof, D. Krautwurst: Identification of specific ligands for orphan olfactory receptors: G protein-dependent agonism and antagonism of odorants, J. Biol. Chem. 280(12), 11807–11815 (2005)CrossRefGoogle Scholar
  184. [184]
    Q. Liu, H. Cai, Y. Xu, Y. Li, R. Li, P. Wang: Olfactory cell-based biosensor: A first step towards a neurochip of bioelectronic nose, Biosens. Bioelectron. 22(2), 318–322 (2006)CrossRefGoogle Scholar
  185. [185]
    C. Ziegler, W. Gopel, H. Hammerle, H. Hatt, G. Jung, L. Laxhuber, H.L. Schmidt, S. Schutz, F. Vogtle, A. Zell: Bioelectronic noses: A status report. Part II, Biosens. Bioelectron. 13(5), 539–571 (1998)CrossRefGoogle Scholar
  186. [186]
    R. Glatz, K. Bailey-Hill: Mimicking nature’s noses: From receptor deorphaning to olfactory biosensing, Prog. Neurobiol. 93(2), 270–296 (2011)CrossRefGoogle Scholar
  187. [187]
    K. Toko: Biomimetic Sensor Technology (Cambridge University Press, Tokyo 2005)Google Scholar
  188. [188]
    E. Kress-Rogers: Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment (CRC Press, Boca Raton 1997)Google Scholar
  189. [189]
    J. Hurst: Electronic noses and sensor array based systems, 5th Int. Symp. Proc. Des. Appl. (CRC Press, Boca Raton 1999)Google Scholar
  190. [190]
    S.H. Lee, T.H. Park: Recent advances in the development of bioelectronic nose, Biotechnol. Bioprocess Eng. 15(1), 22–29 (2010)CrossRefGoogle Scholar
  191. [191]
    T. Wink, S.J. Van Zuilen, A. Bult, W.P. Van Bennekom: Self-assembled monolayers for biosensors, Analyst 122(4), 43R–50R (1997)CrossRefGoogle Scholar
  192. [192]
    Y. Hou, N. Jaffrezic-Renault, C. Martelet, C. Tlili, A. Zhang, J.C. Pernollet, L. Briand, G. Gomila, A. Errachid, J. Samitier, L. Salvagnac, B. Torbiero, P. Temple-Boyer: Study of langmuir and langmuir-blodgett films of odorant-binding protein/amphiphile for odorant biosensors, Langmuir 21(9), 4058–4065 (2005)CrossRefGoogle Scholar
  193. [193]
    K. Parikh, K. Cattanach, R. Rao, D.S. Suh, A. Wu, S.K. Manohar: Flexible vapour sensors using single walled carbon nanotubes, Sens. Actuators B Chem. 113(1), 55–63 (2006)CrossRefGoogle Scholar
  194. [194]
    S. Lakard, G. Herlem, N. Valles-Villareal, G. Michel, A. Propper, T. Gharbi, B. Fahys: Culture of neural cells on polymers coated surfaces for biosensor applications, Biosens. Bioelectron. 20(10), 1946–1954 (2005)CrossRefGoogle Scholar
  195. [195]
    T.Z. Wu, Y.R. Lo, E.C. Chan: Exploring the recognized bio-mimicry materials for gas sensing, Biosens. Bioelectron. 16(9–12), 945–953 (2001)CrossRefGoogle Scholar
  196. [196]
    T.Z. Wu, Y.R. Lo: Synthetic peptide mimicking of binding sites on olfactory receptor protein for use in ’electronic nose’, J. Biotechnol. 80(1), 63–73 (2000)CrossRefGoogle Scholar
  197. [197]
    S. Sankaran, S. Panigrahi, S. Mallik: Odorant binding protein based biomimetic sensors for detection of alcohols associated with salmonella contamination in packaged beef, Biosens. Bioelectron. 26(7), 3103–3109 (2011)CrossRefGoogle Scholar
  198. [198]
    S. Sankaran, S. Panigrahi, S. Mallik: Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications, Sens. Actuators B Chem. 155(1), 8–18 (2011)CrossRefGoogle Scholar
  199. [199]
    S.W. Kruse, R. Zhao, D.P. Smith, D.N.M. Jones: Structure of a specific alcohol-binding site defined by the odorant binding protein lush from drosophila melanogaster, Nature Struct. Biol. 10(9), 694–700 (2003)CrossRefGoogle Scholar
  200. [200]
    J.W. Jaworski, D. Raorane, J.H. Huh, A. Majumdar, S.W. Lee: Evolutionary screening of biomimetic coatings for selective detection of explosives, Langmuir 24(9), 4938–4943 (2008)CrossRefGoogle Scholar
  201. [201]
    M.C. McAlpine, H.D. Agnew, R.D. Rohde, M. Blanco, H. Ahmad, A.D. Stuparu, W.A. Goddard III, J.R. Heath: Peptide-nanowire hybrid materials for selective sensing of small molecules, J. Am. Chem. Soc. 130(29), 9583–9589 (2008)CrossRefGoogle Scholar
  202. [202]
    L. Du, C. Wu, Q. Liu, L. Huang, P. Wang: Recent advances in olfactory receptor-based biosensors, Biosens. Bioelectron. 42(1), 570–580 (2013)CrossRefGoogle Scholar
  203. [203]
    T.Z. Wu: A piezoelectric biosensor as an olfactory receptor for odour detection: Electronic nose, Biosens. Bioelectron. 14(1), 9–18 (1999)CrossRefGoogle Scholar
  204. [204]
    C.H. Wetzel, M. Oles, C. Wellerdieck, M. Kuczkowiak, G. Gisselmann, H. Hatt: Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and xenopus laevis oocytes, J. Neurosci. 19(17), 7426–7433 (1999)Google Scholar
  205. [205]
    D. Krautwurst, K.W. Yau, R.R. Reed: Identification of ligands for olfactory receptors by functional expression of a receptor library, Cell 95(7), 917–926 (1998)CrossRefGoogle Scholar
  206. [206]
    H.J. Ko, T.H. Park: Piezoelectric olfactory biosensor: Ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system, Biosens. Bioelectron. 20(7), 1327–1332 (2005)CrossRefGoogle Scholar
  207. [207]
    A. Suska, A.B. Ibanez, P. Preechaburana, I. Lundstrom, A. Berghard: G protein-coupled receptor mediated sensing of TMA, Procedia Chem. 1, 321–324 (2009)CrossRefGoogle Scholar
  208. [208]
    J.H. Sung, H.J. Ko, T.H. Park: Piezoelectric biosensor using olfactory receptor protein expressed in escherichia coli, Biosens. Bioelectron. 21(10), 1981–1986 (2006)CrossRefGoogle Scholar
  209. [209]
    J. Minic, M.A. Persuy, E. Godel, J. Aioun, I. Connerton, R. Salesse, E. Pajot-Augy: Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening, FEBS J. 272(2), 524–537 (2005)CrossRefGoogle Scholar
  210. [210]
    N.A. Fikri, A.H. Adorn, A.Y.M. Shakaff, M.N. Ahmad, A.H. Abdullah, A. Zakaria, M.A. Markom: Development of human sensory mimicking system, Sens. Lett. 9(1), 423–427 (2011)CrossRefGoogle Scholar
  211. [211]
    R. Banerjee, P. Chattopadhyay, R. Rani, B. Tudu, R. Bandyopadhyay, N. Bhattacharyya: Discrimination of black tea using electronic nose and electronic tongue: A bayesian classifier approach, Proc. Int. Conf. Recent Trends Inf. Syst. (RETIS) (2011) pp. 13–17Google Scholar
  212. [212]
    R. Banerjee, B. Tudu, L. Shaw, A. Jana, N. Bhattacharyya, R. Bandyopadhyay: Instrumental testing of tea by combining the responses of electronic nose and tongue, J. Food Eng. 110(3), 356–363 (2012)CrossRefGoogle Scholar
  213. [213]
    M. Cole, J.A. Covington, J.W. Gardner: Combined electronic nose and tongue for a flavour sensing system, Sens. Actuators B Chem. 156(2), 832–839 (2011)CrossRefGoogle Scholar
  214. [214]
    A. Rudnitskaya, I. Delgadillo, A. Legin, S.M. Rocha, A.M. Costa, T. Simoes: Prediction of the port wine age using an electronic tongue, Chemom. Intell. Lab. Syst. 88(1), 125–131 (2007)CrossRefGoogle Scholar
  215. [215]
    C. Di Natale, R. Paolesse, A. MacAgnano, A. Mantini, A. D’Amico, M. Ubigli, A. Legin, L. Lvova, A. Rudnitskaya, Y. Vlasov: Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wine, Sens. Actuators B Chem. 69(3), 342–347 (2000)CrossRefGoogle Scholar
  216. [216]
    S. Buratti, S. Benedetti, M. Scampicchio, E.C. Pangerod: Characterization and classification of italian barbera wines by using an electronic nose and an amperometric electronic tongue, Anal. Chim. Acta 525(1), 133–139 (2004)CrossRefGoogle Scholar
  217. [217]
    A. Zakaria, A.Y.M. Shakaff, M.J. Masnan, M.N. Ahmad, A.H. Adom, M.N. Jaafar, S.A. Ghani, A.H. Abdullah, A.H.A. Aziz, L.M. Kamarudin, N. Subari, N.A. Fikri: A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration, Sensors 11(8), 7799–7822 (2011)CrossRefGoogle Scholar
  218. [218]
    M. Mamat, S.A. Samad: Classification of beverages using electronic nose and machine vision systems, Proc. APSIPA (2012) pp. 1–6Google Scholar
  219. [219]
    I.M. Apetrei, M.L. Rodriguez-Mendez, C. Apetrei, I. Nevares, M. del Alamo, J.A. de Saja: Monitoring of evolution during red wine aging in oak barrels and alternative method by means of an electronic panel test, Food Res. Int. 45(1), 244–249 (2012)CrossRefGoogle Scholar
  220. [220]
    N. Prieto, M. Gay, S. Vidal, O. Aagaard, J.A. De Saja, M.L. Rodriguez-Mendez: Analysis of the influence of the type of closure in the organoleptic characteristics of a red wine by using an electronic panel, Food Chem. 129(2), 589–594 (2011)CrossRefGoogle Scholar
  221. [221]
    C. Apetrei, I.M. Apetrei, S. Villanueva, J.A. de Saja, F. Gutierrez-Rosales, M.L. Rodriguez-Mendez: Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness, Anal. Chim. Acta 663(1), 91–97 (2010)CrossRefGoogle Scholar
  222. [222]
    M. Casale, C. Casolino, P. Oliveri, M. Forina: The potential of coupling information using three analytical techniques for identifying the geographical origin of liguria extra virgin olive oil, Food Chem. 118(1), 163–170 (2010)CrossRefGoogle Scholar
  223. [223]
    L. Vera, L. Aceia, J. Guasch, R. Boqua, M. Mestres, O. Busto: Discrimination and sensory description of beers through data fusion, Talanta 87(1), 136–142 (2011)CrossRefGoogle Scholar
  224. [224]
    M. Gutierrez, A. Llobera, J. Vila-Planas, F. Capdevila, S. Demming, S. Buttgenbach, S. Minguez, C. Jimenez-Jorquera: Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine, Analyst 135(7), 1718–1725 (2010)CrossRefGoogle Scholar
  225. [225]
    S. Buratti, D. Ballabio, S. Benedetti, M.S. Cosio: Prediction of italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of genetic algorithm regression models, Food Chem. 100(1), 211–218 (2007)CrossRefGoogle Scholar
  226. [226]
    S. Buratti, D. Ballabio, G. Giovanelli, C.M.Z. Dominguez, A. Moles, S. Benedetti, N. Sinelli: Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue, Anal. Chim. Acta 697(1/2), 67–74 (2011)CrossRefGoogle Scholar
  227. [227]
    T. Garcia-Martinez, A. Bellincontro, M.D.L.N.L. De Lerma, R.A. Peinado, J.C. Mauricio, F. Mencarelli, J.J. Moreno: Discrimination of sweet wines partially fermented by two osmo-ethanol-tolerant yeasts by gas chromatographic analysis and electronic nose, Food Chem. 127(3), 1391–1396 (2011)CrossRefGoogle Scholar
  228. [228]
    P. Watkins, C. Wijesundera: Application of znose for the analysis of selected grape aroma compounds, Talanta 70(3), 595–601 (2006)CrossRefGoogle Scholar
  229. [229]
    D. Cozzolino, H.E. Smyth, K.A. Lattey, W. Cynkar, L. Janik, R.G. Dambergs, I.L. Francis, M. Gishen: Combining mass spectrometry based electronic nose, visible-near infrared spectroscopy and chemometrics to assess the sensory properties of australian riesling wines, Anal. Chim. Acta 563(1/2), 319–324 (2006)CrossRefGoogle Scholar
  230. [230]
    N. Prieto, M.L. Rodriguez-Mendez, R. Leardi, P. Oliveri, D. Hernando-Esquisabel, M. Iniguez-Crespo, J.A. de Saja: Application of multi-way analysis to uv-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation, Anal. Chim. Acta 719, 43–51 (2012)CrossRefGoogle Scholar
  231. [231]
    A.Z. Berna, S. Trowell, D. Clifford, W. Cynkar, D. Cozzolino: Geographical origin of sauvignon blanc wines predicted by mass spectrometry and metal oxide based electronic nose, Anal. Chim. Acta 648(2), 146–152 (2009)CrossRefGoogle Scholar
  232. [232]
    Q. Liu, W. Ye, L. Xiao, L. Du, N. Hu, P. Wang: Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose, Biosens. Bioelectron. 25(10), 2212–2217 (2010)CrossRefGoogle Scholar
  233. [233]
    M. Huotari, V. Lantto: Measurements of odours based on response analysis of insect olfactory receptor neurons, Sens. Actuators B Chem. 127(1), 284–287 (2007)CrossRefGoogle Scholar
  234. [234]
    M. Huotari, M. Mela: Blowfly olfactory biosensor’s sensitivity and specificity, Sens. Actuators B Chem. 34(1–3), 240–244 (1996)CrossRefGoogle Scholar
  235. [235]
    S. Schutz, M.J. Schoning, P. Schroth, U. Malkoc, B. Weissbecker, P. Kordos, H. Luth, H.E. Hummel: Insect-based biofet as a bioelectronic nose, Sens. Actuators B Chem. 65(1), 291–295 (2000)CrossRefGoogle Scholar
  236. [236]
    K.S. Mead: Using lobster noses to inspire robot sensor design, Trends Biotechnol. 20(7), 276–277 (2002)CrossRefGoogle Scholar
  237. [237]
    F. Winquist, I. Lundstrom, P. Wide: Combination of an electronic tongue and an electronic nose, Sens. Actuators B Chem. 58(1–3), 512–517 (1999)CrossRefGoogle Scholar
  238. [238]
    M. Valle: Bioinspired sensor systems, Sensors 11(11), 10180–10186 (2011)CrossRefGoogle Scholar
  239. [239]
    S. Soltic, S.G. Wysoski, N.K. Kasabov: Evolving spiking neural networks for taste recognition, Proc. Int. Jt. Conf. Neural Netw. (2008) pp. 2091–2097Google Scholar
  240. [240]
    E. Martinelli, D. Polese, F. Dini, R. Paolesse, D. Filippini, A. D’Amico, D. Schild, I. Lundstrom, C. Di Natale: Testing olfactory models with an artificial experimental platform, Proc. Int. Jt. Conf. Neural Netw. (2010) pp. 1–6Google Scholar
  241. [241]
    A. Perera, T. Yamanaka, A. Gutierrez-Galvez, B. Raman, R. Gutierrez-Osuna: A dimensionality-reduction technique inspired by receptor convergence in the olfactory system, Sens. Actuators B Chem. 116(1/2), 17–22 (2006)CrossRefGoogle Scholar
  242. [242]
    B. Raman, P.A. Sun, A. Gutierrez-Galvez, R. Gutierrez-Osuna: Processing of chemical sensor arrays with a biologically inspired model of olfactory coding, IEEE Trans. Neural Netw. 17(4), 1015–1024 (2006)CrossRefGoogle Scholar
  243. [243]
    B. Raman, T. Yamanaka, R. Gutierrez-Osuna: Contrast enhancement of gas sensor array patterns with a neurodynamics model of the olfactory bulb, Sens. Actuators B Chem. 119(2), 547–555 (2006)CrossRefGoogle Scholar
  244. [244]
    G. Pioggia, M. Ferro, F.D. Francesco, A. Ahluwalia, D. De Rossi: Assessment of bioinspired models for pattern recognition in biomimetic systems, Bioinspir. Biomim. 3, 016004 (2008)CrossRefGoogle Scholar
  245. [245]
    L. Robertsson, B. Iliev, R. Palm, P. Wide: Perception modeling for human-like artificial sensor systems, Int. J. Human Comput. Stud. 65(5), 446–459 (2007)CrossRefGoogle Scholar
  246. [246]
    W. Gopel: Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses, Sens. Actuators B Chem. 52(1/2), 125–142 (1998)CrossRefGoogle Scholar
  247. [247]
    C. Di Natale, R. Paolesse, A. D’Arnico: Food and beverage quality asssurance. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  248. [248]
    H.D. Werlein: Discrimination of chocolates and packaging materials by an electronic nose, Eur. Food Res. Technol. 212(4), 529–533 (2001)CrossRefGoogle Scholar
  249. [249]
    M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M. Siadat, S. Balasubramanian: Meat quality assessment by electronic nose (machine olfaction technology), Sensors 9(8), 6058–6083 (2009)CrossRefGoogle Scholar
  250. [250]
    G. Sala, G. Masoero, L.M. Battaglini, P. Cornale, S. Barbera: Electronic nose and use of bags to collect odorous air samples in meat quality analysis, AIP Conf. Proc. 1137(1), 337–340 (2009)CrossRefGoogle Scholar
  251. [251]
    T. Rajamaki, H.L. Alakomi, T. Ritvanen, E. Skytta, M. Smolander, R. Ahvenainen: Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat, Food Control 17(1), 5–13 (2006)CrossRefGoogle Scholar
  252. [252]
    J.S. Vestergaard, M. Martens, P. Turkki: Analysis of sensory quality changes during storage of a modified atmosphere packaged meat product (pizza topping) by an electronic nose system, LWT – Food Sci. Technol. 40(6), 1083–1094 (2007)CrossRefGoogle Scholar
  253. [253]
    L. Gil, J.M. Barat, E. Garcia-Breijo, J. Ibanez, R. Martinez-Manez, J. Soto, E. Llobet, J. Brezmes, M.C. Aristoy, F. Toldra: Fish freshness analysis using metallic potentiometric electrodes, Sens. Actuators B Chem. 131(2), 362–370 (2008)CrossRefGoogle Scholar
  254. [254]
    P.M. Schweizer-Berberich, S. Vaihinger, W. Gopel: Characterisation of food freshness with sensor arrays, Sens. Actuators B. Chem. 18(1–3), 282–290 (1994)CrossRefGoogle Scholar
  255. [255]
    M. Egashira: Functional design of semiconductor gas sensors for measurement of smell and freshness, Proc. Int. Conf. Solid-State Sens. Actuators, Vol. 2 (1997) pp. 1385–1388Google Scholar
  256. [256]
    V.Y. Musatov, V.V. Sysoev, M. Sommer, I. Kiselev: Assessment of meat freshness with metal oxide sensor microarray electronic nose: A practical approach, Sens. Actuators B Chem. 144(1), 99–103 (2010)CrossRefGoogle Scholar
  257. [257]
    G. Olafsdottir, E. Chanie, F. Westad, R. Jonsdottir, C.R. Thalmann, S. Bazzo, S. Labreche, P. Marcq, F. Lundby, J.E. Haugen: Prediction of microbial and sensory quality of cold smoked atlantic salmon (solmo salar) by electronic nose, J. Food Sci. 70(9), S563–S574 (2005)CrossRefGoogle Scholar
  258. [258]
    J.E. Haugen, E. Chanie, F. Westad, R. Jonsdottir, S. Bazzo, S. Labreche, P. Marcq, F. Lundby, G. Olafsdottir: Rapid control of smoked atlantic salmon (salmo salar) quality by electronic nose: Correlation with classical evaluation methods, Sens. Actuators B Chem. 116(1/2), 72–77 (2006)CrossRefGoogle Scholar
  259. [259]
    J.M. Barat, L. Gil, E. Garcia-Breijo, M.C. Aristoy, F. Toldra, R. Martinez-Manez, J. Soto: Freshness monitoring of sea bream (sparus aurata) with a potentiometric sensor, Food Chem. 108(2), 681–688 (2008)CrossRefGoogle Scholar
  260. [260]
    F. Winquist, H. Sundgren, I. Lundstrom: Practical use of electronic noses: Quality estimation of cod fillet bought over the counter, Proc. Int. Conf. Solid-State Sens. Actuators Eurosens. IX (1995) pp. 695–698Google Scholar
  261. [261]
    R. Jonsdottir, G. Olafsdottir, E. Martinsdottir, G. Stefansson: Flavor characterization of ripened cod roe by gas chromatography, sensory analysis, and electronic nose, J. Agricult. Food Chem. 52(20), 6250–6256 (2004)CrossRefGoogle Scholar
  262. [262]
    M. Zhang, X. Wang, Y. Liu, X. Xu, G. Zhou: Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation, Sensors (Switzerland) 12(9), 12562–12571 (2012)CrossRefGoogle Scholar
  263. [263]
    M. Ghasemi-Varnamkhasti, M.L. Rodriguez-Mendez, S.S. Mohtasebi, C. Apetrei, J. Lozano, H. Ahmadi, S.H. Razavi, J. Antonio de Saja: Monitoring the aging of beers using a bioelectronic tongue, Food Control 25(1), 216–224 (2012)CrossRefGoogle Scholar
  264. [264]
    M.P. Marti, O. Busto, J. Guasch, R. Boque: Electronic noses in the quality control of alcoholic beverages, TrAC – Trends Anal. Chem. 24(1), 57–66 (2005)CrossRefGoogle Scholar
  265. [265]
    J.A. Ragazzo-Sanchez, P. Chalier, D. Chevalier-Lucia, M. Calderon-Santoyo, C. Ghommidh: Off-flavours detection in alcoholic beverages by electronic nose coupled to GC, Sens. Actuators B Chem. 140(1), 29–34 (2009)CrossRefGoogle Scholar
  266. [266]
    M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M.L. Rodriguez-Mendez, M. Siadat, H. Ahmadi, S.H. Razavi: Electronic and bioelectronic tongues, two promising analytical tools for the quality evaluation of non alcoholic beer, Trends Food Sci. Technol. 22(5), 245–248 (2011)CrossRefGoogle Scholar
  267. [267]
    Á.A. Arrieta, M.L. Rodríguez-Méndez, J.A. de Saja, C.A. Blanco, D. Nimubona: Prediction of bitterness and alcoholic strength in beer using an electronic tongue, Food Chem. 123(1), 642–646 (2010)CrossRefGoogle Scholar
  268. [268]
    M. Ghasemi-Varnamkhasti, S.S. Mohtasebi, M.L. Rodriguez-Mendez, J. Lozano, S.H. Razavi, H. Ahmadi: Potential application of electronic nose technology in brewery, Trends Food Sci. Technol. 22(4), 165–174 (2011)CrossRefGoogle Scholar
  269. [269]
    C. Zhang, D.P. Bailey, K.S. Suslick: Colorimetric sensor arrays for the analysis of beers: A feasibility study, J. Agricult. Food Chem. 54(14), 4925–4931 (2006)CrossRefGoogle Scholar
  270. [270]
    P.W. Alexander, L.T. Di Benedetto, D.B. Hibbert: A field-portable gas analyzer with an array of six semiconductor sensors. Part 2: Identification of beer samples using artificial neural networks, Field Anal. Chem. Technol. 2(3), 145–153 (1998)CrossRefGoogle Scholar
  271. [271]
    J.W. Gardner, T.C. Pearce, S. Friel, P.N. Bartlett, N. Blair: A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers, Sens. Actuators B Chem. 18(1–3), 240–243 (1994)CrossRefGoogle Scholar
  272. [272]
    J. Lozano, J.P. Santos, J. Gutierrez, M.C. Horrillo: Comparative study of sampling systems combined with gas sensors for wine discrimination, Sens. Actuators B Chem. 126(2), 616–623 (2007)CrossRefGoogle Scholar
  273. [273]
    J. Lozano, J.P. Santos, T. Arroyo, M. Aznar, J.M. Cabellos, M. Gil: M. d. C. Horrillo: Correlating e-nose responses to wine sensorial descriptors and gas chromatography-mass spectrometry profiles using partial least squares regression analysis, Sens. Actuators B Chem. 127(1), 267–276 (2007)CrossRefGoogle Scholar
  274. [274]
    M. Aleixandre, J. Lozano, J. Gutierrez, I. Sayago, M.J. Fernandez, M.C. Horrillo: Portable e-nose to classify different kinds of wine, Sens. Actuators B Chem. 131(1), 71–76 (2008)CrossRefGoogle Scholar
  275. [275]
    A.Z. Berna, S. Trowell, W. Cynkar, D. Cozzolino: Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage, J. Agricult. Food Chem. 56(9), 3238–3244 (2008)CrossRefGoogle Scholar
  276. [276]
    W. Cynkar, R. Dambergs, P. Smith, D. Cozzolino: Classification of tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics, Anal. Chim. Acta 660(1/2), 227–231 (2010)CrossRefGoogle Scholar
  277. [277]
    M. Garcia, M. Aleixandre, J. Gutierrez, M.C. Horrillo: Electronic nose for wine discrimination, Sens. Actuators B Chem. 113(2), 911–916 (2006)CrossRefGoogle Scholar
  278. [278]
    C. Di Natale, F.A.M. Davide, A. D’Amico, P. Nelli, S. Groppelli, G. Sberveglieri: An electronic nose for the recognition of the vineyard of a red wine, Sens. Actuators B Chem. 33(1–3), 83–88 (1996)CrossRefGoogle Scholar
  279. [279]
    L. Vera, M. Mestres, R. Boquo, O. Busto, J. Guasch: Use of synthetic wine for models transfer in wine analysis by HS-MS e-nose, Sens. Actuators B Chem. 143(2), 689–695 (2010)CrossRefGoogle Scholar
  280. [280]
    J.P. Santos, J. Lozano, M. Aleixandre, T. Arroyo, J.M. Cabellos, M. Gil, Md..C. Horrillo: Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel, Talanta 80(5), 1899–1906 (2010)CrossRefGoogle Scholar
  281. [281]
    T. Aguilera, J. Lozano, J.A. Paredes, F.J. Alvarez, J.I. Suarez: Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction, Sensors (Switzerland) 12(6), 8055–8072 (2012)CrossRefGoogle Scholar
  282. [282]
    R.C. McKellar, H.P.V. Rupasinghe, X. Lu, K.P. Knight: The electronic nose as a tool for the classification of fruit and grape wines from different ontario wineries, J. Sci. Food Agricult. 85(14), 2391–2396 (2005)CrossRefGoogle Scholar
  283. [283]
    C. Di Natale, F.A.M. Davide, A. D’Amico, G. Sberveglieri, P. Nelli, G. Faglia, C. Perego: Complex chemical pattern recognition with sensor array: The discrimination of vintage years of wine, Sens. Actuators B Chem. 25(1–3), 801–804 (1995)CrossRefGoogle Scholar
  284. [284]
    M. Penza, G. Cassano: Chemometric characterization of italian wines by thin-film multisensors array and artificial neural networks, Food Chem. 86(2), 283–296 (2004)CrossRefGoogle Scholar
  285. [285]
    J.A. Ragazzo-Sanchez, P. Chalier, D. Chevalier, M. Calderon-Santoyo, C. Ghommidh: Identification of different alcoholic beverages by electronic nose coupled to GC, Sens. Actuators B Chem. 134(1), 43–48 (2008)CrossRefGoogle Scholar
  286. [286]
    T. Aishima: Discrimination of liquor aromas by pattern recognition analysis of responses from a gas sensor array, Anal. Chim. Acta 243(2), 293–300 (1991)CrossRefGoogle Scholar
  287. [287]
    L. Sipos, Z. Kovacs, V. Sagi-Kiss, T. Csiki, Z. Kokai, A. Fekete, K. Heberger: Discrimination of mineral waters by electronic tongue, sensory evaluation and chemical analysis, Food Chem. 135(4), 2947–2953 (2012)CrossRefGoogle Scholar
  288. [288]
    C. Zhang, K.S. Suslick: Colorimetric sensor array for soft drink analysis, J. Agricult. Food Chem. 55(2), 237–242 (2007)CrossRefGoogle Scholar
  289. [289]
    H. Reinhard, F. Sager, O. Zoller: Citrus juice classification by SPME-GC-MS and electronic nose measurements, LWT – Food Sci. Technol. 41(10), 1906–1912 (2008)CrossRefGoogle Scholar
  290. [290]
    E.R. Farnworth, R.C. McKellar, D. Chabot, S. Lapointe, M. Chicoine, K.P. Knight: Use of an electronic nose to study the contribution of volatiles to orange juice flavor, J. Food Qual. 25(6), 569–576 (2002)CrossRefGoogle Scholar
  291. [291]
    P. Boilot, E.L. Hines, M.A. Gongora, R.S. Folland: Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions, Sens. Actuators B Chem. 88(1), 80–88 (2003)CrossRefGoogle Scholar
  292. [292]
    J.W. Gardner, H.V. Shurmer, T.T. Tan: Application of an electronic nose to the discrimination of coffees, Sens. Actuators B Chem. 6(1–3), 71–75 (1992)CrossRefGoogle Scholar
  293. [293]
    N.F. Shilbayeh, M.Z. Iskandarani: Quality control of coffee using an electronic nose system, Am. J. Appl. Sci. 1(2), 129–135 (2004)CrossRefGoogle Scholar
  294. [294]
    C. Lindinger, D. Labbe, P. Pollien, A. Rytz, M.A. Juillerat, C. Yeretzian, I. Blank: When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee, Anal. Chem. 80(5), 1574–1581 (2008)CrossRefGoogle Scholar
  295. [295]
    B.A. Suslick, L. Feng, K.S. Suslick: Discrimination of complex mixtures by a colorimetric sensor array: Coffee aromas, Anal. Chem. 82(5), 2067–2073 (2010)CrossRefGoogle Scholar
  296. [296]
    J. Rodriguez, C. Duran, A. Reyes: Electronic nose for quality control of colombian coffee through the detection of defects in ’Cup tests’, Sensors 10(1), 36–46 (2010)CrossRefGoogle Scholar
  297. [297]
    R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kashwan, M. Bhuyan: Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach, Sens. Actuators B Chem. 94(2), 228–237 (2003)CrossRefGoogle Scholar
  298. [298]
    R. Dutta, K.R. Kashwan, M. Bhuyan, E.L. Hines, J.W. Gardner: Electronic nose based tea quality standardization, Neural Netw. 16(5-6), 847–853 (2003)CrossRefGoogle Scholar
  299. [299]
    H. Yu, J. Wang: Discrimination of longjing green-tea grade by electronic nose, Sens. Actuators B Chem. 122(1), 134–140 (2007)CrossRefGoogle Scholar
  300. [300]
    H. Yu, J. Wang, H. Zhang, Y. Yu, C. Yao: Identification of green tea grade using different feature of response signal from e-nose sensors, Sens. Actuators B Chem. 128(2), 455–461 (2008)CrossRefGoogle Scholar
  301. [301]
    B. Tudu, A. Jana, A. Metla, D. Ghosh, N. Bhattacharyya, R. Bandyopadhyay: Electronic nose for black tea quality evaluation by an incremental RBF network, Sens. Actuators B Chem. 138(1), 90–95 (2009)CrossRefGoogle Scholar
  302. [302]
    R.N. Bleibaum, H. Stone, T. Tan, S. Labreche, E. Saint-Martin, S. Isz: Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices, Food Qual. Pref. 13(6), 409–422 (2002)CrossRefGoogle Scholar
  303. [303]
    S. Saevels, J. Lammertyn, A.Z. Berna, E.A. Veraverbeke, C. Di Natale, B.M. Nicolai: Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples, Postharvest Biol. Technol. 30(1), 3–14 (2003)CrossRefGoogle Scholar
  304. [304]
    S. Saevels, J. Lammertyn, A.Z. Berna, E.A. Veraverbeke, C. Di Natale, B.M. Nicolai: An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life, Postharvest Biol. Technol. 31(1), 9–19 (2004)CrossRefGoogle Scholar
  305. [305]
    C. Li, P. Heinemann, R. Sherry: Neural network and bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection, Sens. Actuators B Chem. 125(1), 301–310 (2007)CrossRefGoogle Scholar
  306. [306]
    S. Benedetti, S. Buratti, A. Spinardi, S. Mannino, I. Mignani: Electronic nose as a non-destructive tool to characterise peach cultivars and to monitor their ripening stage during shelf-life, Postharvest Biol. Technol. 47(2), 181–188 (2008)CrossRefGoogle Scholar
  307. [307]
    C. Di Natale, A. Macagnano, E. Martinelli, E. Proietti, R. Paolesse, L. Castellari, S. Campani, A. D’Amico: Electronic nose based investigation of the sensorial properties of peaches and nectarines, Sens. Actuators B Chem. 77(1/2), 561–566 (2001)CrossRefGoogle Scholar
  308. [308]
    J. Brezmes, E. Llobet, X. Vilanova, G. Saiz, X. Correig: Fruit ripeness monitoring using an electronic nose, Sens. Actuators B Chem. 69(3), 223–229 (2000)CrossRefGoogle Scholar
  309. [309]
    S. Oshita, K. Shima, T. Haruta, Y. Seo, Y. Kawagoe, S. Nakayama, H. Takahara: Discrimination of odors emanating from ’la france’ pear by semi-conducting polymer sensors, Comput. Electron. Agricult. 26(2), 209–216 (2000)CrossRefGoogle Scholar
  310. [310]
    H. Zhang, J. Wang, S. Ye: Predictions of acidity, soluble solids and firmness of pear using electronic nose technique, J. Food Eng. 86(3), 370–378 (2008)CrossRefGoogle Scholar
  311. [311]
    M. Benady, J.E. Simon, D.J. Charles, G.E. Miles: Fruit ripeness determination by electronic sensing of aromatic volatiles, Trans. Am. Soc. Agricult. Eng. 38(1), 251–257 (1995)CrossRefGoogle Scholar
  312. [312]
    C. Di Natale, A. Macagnano, E. Martinelli, R. Paolesse, E. Proietti, A. D’Amico: The evaluation of quality of post-harvest oranges and apples by means of an electronic nose, Sens. Actuators B Chem. 78(1–3), 26–31 (2001)CrossRefGoogle Scholar
  313. [313]
    E. Llobet, E.L. Hines, J.W. Gardner, S. Franco: Non-destructive banana ripeness determination using a neural network-based electronic nose, Meas. Sci. Technol. 10(6), 538–548 (1999)CrossRefGoogle Scholar
  314. [314]
    A.Z. Berna, J. Lammertryn, S. Saevels, C. Di Natale, B.M. Nicolai: Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile, Sens. Actuators B Chem. 97(2/3), 324–333 (2004)CrossRefGoogle Scholar
  315. [315]
    A.H. Gomez, G. Hu, J. Wang, A.G. Pereira: Evaluation of tomato maturity by electronic nose, Comput. Electron. Agricult. 54(1), 44–52 (2006)CrossRefGoogle Scholar
  316. [316]
    A.H. Gomez, J. Wang, G. Hu, A.G. Pereira: Monitoring storage shelf life of tomato using electronic nose technique, J. Food Eng. 85(4), 625–631 (2008)CrossRefGoogle Scholar
  317. [317]
    J. Laothawornkitkul, J.P. Moore, J.E. Taylor, M. Possell, T.D. Gibson, C.N. Hewitt, N.D. Paul: Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring, Env. Sci. Technol. 42(22), 8433–8439 (2008)CrossRefGoogle Scholar
  318. [318]
    C. Li, G.W. Krewer, P. Ji, H. Scherm, S.J. Kays: Gas sensor array for blueberry fruit disease detection and classification, Postharvest Biol. Technol. 55(3), 144–149 (2010)CrossRefGoogle Scholar
  319. [319]
    N. Demir, A.C.O. Ferraz, S.A. Sargent, M.O. Balaban: Classification of impacted blueberries during storage using an electronic nose, J. Sci. Food Agricult. 91(9), 1722–1727 (2011)CrossRefGoogle Scholar
  320. [320]
    J.E. Simon, A. Hetzroni, B. Bordelon, G.E. Miles, D.J. Charles: Electronic sensing of aromatic volatiles for quality sorting of blueberries, J. Food Sci. 61(5), 967–970 (1996)CrossRefGoogle Scholar
  321. [321]
    Z. Li, N. Wang, G.S. Vijaya Raghavan, C. Vigneault: Ripeness and rot evaluation of ’Tommy Atkins’ mango fruit through volatiles detection, J. Food Eng. 91(2), 319–324 (2009)CrossRefGoogle Scholar
  322. [322]
    H. Chen, J. De Baerdemaeker: Modal analysis of the dynamic behavior of pineapples and its relation to fruit firmness, Trans. Am. Soc. Agricult. Eng. 36(5), 1439–1444 (1993)CrossRefGoogle Scholar
  323. [323]
    A.H. Gomez, J. Wang, G. Hu, A.G. Pereira: Electronic nose technique potential monitoring mandarin maturity, Sens. Actuators B Chem. 113(1), 347–353 (2006)CrossRefGoogle Scholar
  324. [324]
    E.Z. Panagou, N. Sahgal, N. Magan, G.J.E. Nychas: Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination, Sens. Actuators B Chem. 134(2), 902–907 (2008)CrossRefGoogle Scholar
  325. [325]
    H.M. Solis-Solis, M. Calderon-Santoyo, P. Gutierrez-Martinez, S. Schorr-Galindo, J.A. Ragazzo-Sanchez: Discrimination of eight varieties of apricot (prunus armeniaca) by electronic nose, lle and spme using gc-ms and multivariate analysis, Sens. Actuators B Chem. 125(2), 415–421 (2007)CrossRefGoogle Scholar
  326. [326]
    E. Gatti, B.G. Defilippi, S. Predieri, R. Infante: Apricot (prunus armeniaca l.) quality and breeding perspectives, J. Food, Agricult. Env. 7(3-4), 573–580 (2009)Google Scholar
  327. [327]
    K.T. Tang, S.W. Chiu, C.H. Pan, H.Y. Hsieh, Y.S. Liang, S.C. Liu: Development of a portable electronic nose system for the detection and classification of fruity odors, Sensors (Switzerland) 10(10), 9179–9193 (2010)CrossRefGoogle Scholar
  328. [328]
    S. Vallone, N.W. Lloyd, S.E. Ebeler, F. Zakharov: Fruit volatile analysis using an electronic nose, J. Vis. Exp (61, e3821 2012)Google Scholar
  329. [329]
    S. Ampuero, J.O. Bosset: The electronic nose applied to dairy products: A review, Sens. Actuators B Chem. 94(1), 1–12 (2003)CrossRefGoogle Scholar
  330. [330]
    W.A. Collier, D.B. Baird, Z.A. Park-Ng, N. More, A.L. Hart: Discrimination among milks and cultured dairy products using screen-printed electrochemical arrays and an electronic nose, Sens. Actuators B Chem. 92(1/2), 232–239 (2003)CrossRefGoogle Scholar
  331. [331]
    S. Capone, M. Epifani, F. Quaranta, P. Siciliano, A. Taurino, L. Vasanelli: Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis, Sens. Actuators B Chem. 78(1–3), 174–179 (2001)CrossRefGoogle Scholar
  332. [332]
    S. Labreche, S. Bazzo, S. Cade, E. Chanie: Shelf life determination by electronic nose: Application to milk, Sens. Actuators B Chem. 106(1), 199–206 (2005)CrossRefGoogle Scholar
  333. [333]
    K. Brudzewski, S. Osowki, T. Markiewicz: Classification of milk by means of an electronic nose and SVM neural network, Sens. Actuators B Chem. 98(2/3), 291–298 (2004)CrossRefGoogle Scholar
  334. [334]
    J.E. Haugen, K. Rudi, S. Langsrud, S. Bredholt: Application of gas-sensor array technology for detection and monitoring of growth of spoilage bacteria in milk: A model study, Anal. Chim. Acta 565(1), 10–16 (2006)CrossRefGoogle Scholar
  335. [335]
    R.T. Marsili: Spme-ms-mva as an electronic nose for the study of off-flavors in milk, J. Agricult. Food Chem. 47(2), 648–654 (1999)CrossRefGoogle Scholar
  336. [336]
    R.T. Marsili: Shelf-life prediction of processed milk by solid-phase microextraction, mass spectrometry, and multivariate analysis, J. Agricult. Food Chem. 48(8), 3470–3475 (2000)CrossRefGoogle Scholar
  337. [337]
    N. Magan, A. Pavlou, I. Chrysanthakis: Milk-sense: A volatile sensing system recognizes spoilage bacteria and yeasts in milk, Sens. Actuators B Chem. 72(1), 28–34 (2001)CrossRefGoogle Scholar
  338. [338]
    M. Brambjlla, M. Guarino, P. Navarotto: Electronic nose approach to monitor UHT milk quality: A case study, Applicazione del naso elettronico per controllo qualità del latte a lunga conservazione 46(469), 540–544 (2007)Google Scholar
  339. [339]
    W. Li, F.S. Hosseinian, A. Tsopmo, J.K. Friel, T. Beta: Evaluation of antioxidant capacity and aroma quality of breast milk, Nutrition 25(1), 105–114 (2009)CrossRefGoogle Scholar
  340. [340]
    B. Wang, S. Xu, D.W. Sun: Application of the electronic nose to the identification of different milk flavorings, Food Res. Int. 43(1), 255–262 (2010)CrossRefGoogle Scholar
  341. [341]
    A. Biolatto, G. Grigioni, M. Irurueta, A.M. Sancho, M. Taverna, N. Pensel: Seasonal variation in the odour characteristics of whole milk powder, Food Chem. 103(3), 960–967 (2007)CrossRefGoogle Scholar
  342. [342]
    V.G. Sangam, M. Sandesh, S. Krishna, S. Mahadevanna: Design of simple instrumentation for the quality analysis of milk (casein analysis), Sci. Technol. 119, 65–71 (2010)Google Scholar
  343. [343]
    S. Benedetti, N. Sinelli, S. Buratti, M. Riva: Shelf life of crescenza cheese as measured by electronic nose, J. Dairy Sci. 88(9), 3044–3051 (2005)CrossRefGoogle Scholar
  344. [344]
    O. Gursoy, P. Somervuo, T. Alatossava: Preliminary study of ion mobility based electronic nose MGD-1 for discrimination of hard cheeses, J. Food Eng. 92(2), 202–207 (2009)CrossRefGoogle Scholar
  345. [345]
    J. Trihaas, P.V. Nielsen: Electronic nose technology in quality assessment: Monitoring the ripening process of danish blue cheese, J. Food Sci. 70(1), E44–E49 (2005)CrossRefGoogle Scholar
  346. [346]
    E. Schaller, J.O. Bosset, F. Escher: Feasibility study: Detection of rind taste off-flavour in swiss emmental cheese using an electroinc nose and a GC-MS, Mitteil. Lebensm. Hyg. 91(5), 610–615 (2000)Google Scholar
  347. [347]
    P.J. O’Riordan, C.M. Delahunty: Characterisation of commercial cheddar cheese flavour. 1: Traditional and electronic nose approach to quality assessment and market classification, Int. Dairy J. 13(5), 355–370 (2003)CrossRefGoogle Scholar
  348. [348]
    K.D. Jou, W.J. Harper: Pattern recognition of swiss cheese aroma compounds by spme/gc and an electronic nose, Milchwissenschaft 53(5), 259–263 (1998)Google Scholar
  349. [349]
    L. Pillonel, S. Ampuero, R. Tabacchi, J.O. Bosset: Analytical methods for the determination of the geographic origin of emmental cheese: Volatile compounds by gc/ms-fid and electronic nose, Eur. Food Res. Technol. 216(2), 179–183 (2003)CrossRefGoogle Scholar
  350. [350]
    K. Karlshoj, P.V. Nielsen, T.O. Larsen: Differentiation of closely related fungi by electronic nose analysis, J. Food Sci. 72(6), M187–M192 (2007)CrossRefGoogle Scholar
  351. [351]
    S. Benedetti, P.M. Toppino, M. Riva: Shelf life of packed taleggio cheese. 2. Valuation by an electronic nose, Scienza e Tecnica Lattiero-Casearia 53, 259–282 (2002)Google Scholar
  352. [352]
    S. Irmler, M.L. Heusler, S. Raboud, H. Schlichtherle-Cerny, M.G. Casey, E. Eugster-Meier: Rapid volatile metabolite profiling of lactobacillus casei strains: Selection of flavour producing cultures, Aust. J. Dairy Technol. 61(2), 123–127 (2006)Google Scholar
  353. [353]
    V.F. Pais, J.A.B.P. Oliveira, M.T.S.R. Gomes: An electronic nose based on coated piezoelectric quartz crystals to certify ewes’ cheese and to discriminate between cheese varieties, Sensors 12(2), 1422–1436 (2012)CrossRefGoogle Scholar
  354. [354]
    H.D. Sapirstein, S. Siddhu, M. Aliani: Discrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose, J. Food Sci. 77(11), S399–S406 (2012)CrossRefGoogle Scholar
  355. [355]
    Q. Zhang, S. Zhang, C. Xie, C. Fan, Z. Bai: ’sensory analysis’ of chinese vinegars using an electronic nose, Sens. Actuators B Chem. 128(2), 586–593 (2008)CrossRefGoogle Scholar
  356. [356]
    M.S. Cosio, S. Buratti, S. Mannino, S. Benedetti: Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the labiatae family, Food Chem. 97(4), 725–731 (2006)CrossRefGoogle Scholar
  357. [357]
    W. Li, J. Friel, T. Beta: An evaluation of the antioxidant properties and aroma quality of infant cereals, Food Chem. 121(4), 1095–1102 (2010)CrossRefGoogle Scholar
  358. [358]
    U. Banach, C. Tiebe, T. Hubert: Multigas sensors for the quality control of spice mixtures, Food Control 26(1), 23–27 (2012)CrossRefGoogle Scholar
  359. [359]
    H. Zhang, M. Balaban, K. Portier, C.A. Sims: Quantification of spice mixture compositions by electronic nose: Part ii. Comparison with gc and sensory methods, J. Food Sci. 70(4), E259–E264 (2005)CrossRefGoogle Scholar
  360. [360]
    A. Jonsson, F. Winquist, J. Schnurer, H. Sundgren, I. Lundstrom: Electronic nose for microbial quality classification of grains, Int. J. Food Microbiol. 35(2), 187–193 (1997)CrossRefGoogle Scholar
  361. [361]
    T. Borjesson, T. Eklov, A. Jonsson, H. Sundgren, J. Schnurer: Electronic nose for odor classification of grains, Cereal Chem. 73(4), 457–461 (1996)Google Scholar
  362. [362]
    X.Z. Zheng, Y.B. Lan, J.M. Zhu, J. Westbrook, W.C. Hoffmann, R.E. Lacey: Rapid identification of rice samples using an electronic nose, J. Bionic Eng. 6(3), 290–297 (2009)CrossRefGoogle Scholar
  363. [363]
    M.J. Lerma-Garcia, E.F. Simo-Alfonso, A. Bendini, L. Cerretani: Metal oxide semiconductor sensors for monitoring of oxidative status evolution and sensory analysis of virgin olive oils with different phenolic content, Food Chem. 117(4), 608–614 (2009)CrossRefGoogle Scholar
  364. [364]
    S. Mildner-Szkudlarz, H.H. Jelen: Detection of olive oil adulteration with rapeseed and sunflower oils using mos electronic nose and SMPE-MS, J. Food Quality 33(1), 21–41 (2010)CrossRefGoogle Scholar
  365. [365]
    M. Cano, J. Roales, P. Castillero, P. Mendoza, A.M. Calero, C. Jimenez-Ot, J.M. Pedrosa: Improving the training and data processing of an electronic olfactory system for the classification of virgin olive oil into quality categories, Sens. Actuators B Chem. 160(1), 916–922 (2011)CrossRefGoogle Scholar
  366. [366]
    S.M. van Ruth, M. Rozijn, A. Koot, R.P. Garcia, H. van der Kamp, R. Codony: Authentication of feeding fats: Classification of animal fats, fish oils and recycled cooking oils, Animal Feed Sci. Technol. 155(1), 65–73 (2010)CrossRefGoogle Scholar
  367. [367]
    E.J. Hong, S.J. Park, J.Y. Choi, B.S. Noh: Discrimination of palm olein oil and palm stearin oil mixtures using a mass spectrometry based electronic nose, Food Sci. Biotechnol. 20(3), 809–816 (2011)CrossRefGoogle Scholar
  368. [368]
    A.M. Marina, Y.B.C. Man, I. Amin: Use of the saw sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein, J. Am. Oil Chem. Soc. 87(3), 263–270 (2010)CrossRefGoogle Scholar
  369. [369]
    C.J. Musto, S.H. Lim, K.S. Suslick: Colorimetric detection and identification of natural and artificial sweeteners, Anal. Chem. 81(15), 6526–6533 (2009)CrossRefGoogle Scholar
  370. [370]
    S. Ampuero, S. Bogdanov, J.O. Bosset: Classification of unifloral honeys with an MS-based electronic nose using different sampling modes: SHS, SPME and INDEX, Eur. Food Res. Technol. 218(2), 198–207 (2004)CrossRefGoogle Scholar
  371. [371]
    B. Plutowska, T. Chmiel, T. Dymerski, W. Wardencki: A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography, Food Chem. 126(3), 1288–1298 (2011)CrossRefGoogle Scholar
  372. [372]
    F. Čačić, L. Primorac, D. Kenjerić, S. Benedetti, M.L. Mandić: Application of electronic nose in honey geographical origin characterisation, J. Central Eur. Agricult. 10(1), 19–26 (2009)Google Scholar
  373. [373]
    S. Benedetti, S. Mannino, A.G. Sabatini, G.L. Marcazzan: Electronic nose and neural network use for the classification of honey, Apidologie 35(4), 397–402 (2004)CrossRefGoogle Scholar
  374. [374]
    S. Ghidini, C. Mercanti, E. Dalcanale, R. Pinalli, P.G. Bracchi: Italian honey authentication, Ann. Fac. Medic. Vet. di Parma 28, 113–120 (2008)Google Scholar
  375. [375]
    J.J. Beck, B.S. Higbee, G.B. Merrill, J.N. Roitman: Comparison of volatile emissions from undamaged and mechanically damaged almonds, J. Sci. Food Agricult. 88(8), 1363–1368 (2008)CrossRefGoogle Scholar
  376. [376]
    B. Hivert, M. Hoummady, P. Mielle, G. Mauvais, J.M. Henrioud, D. Hauden: A fast and reproducible method for gas sensor screening to flavour compounds, Sens. Actuators B Chem. 27(1–3), 242–245 (1995)CrossRefGoogle Scholar
  377. [377]
    R. Baranauskien, E. Bylait, J. Ukaukait, R.P. Venskutonis: Flavor retention of peppermint (mentha piperita l.) essential oil spray-dried in modified starches during encapsulation and storage, J. Agricult. Food Chem. 55(8), 3027–3036 (2007)CrossRefGoogle Scholar
  378. [378]
    Y. Yin, H. Yu, H. Zhang: A feature extraction method based on wavelet packet analysis for discrimination of chinese vinegars using a gas sensors array, Sens. Actuators B Chem. 134(2), 1005–1009 (2008)CrossRefGoogle Scholar
  379. [379]
    V.O.S. Olunloyo, T.A. Ibidapo, R.R. Dinrifo: Neural network-based electronic nose for cocoa beans quality assessment, Agricult. Eng. Int. CIGR J. 13(4), 1–12 (2011)Google Scholar
  380. [380]
    A. Scarpa, S. Bernardi, L. Fachechi, F. Olimpico, M. Passamano, S. Greco: Polypyrrole polymers used for 2,4,6-trichloroanisole discrimination in cork stoppers by libranose, Proc. 11th Meet. Chem. Soc. (2006)Google Scholar
  381. [381]
    I.A. Casalinuovo, D. Di Pierro, M. Coletta, P. Di Francesco: Application of electronic noses for disease diagnosis and food spoilage detection, Sensors 6(11), 1428–1439 (2006)CrossRefGoogle Scholar
  382. [382]
    N. Magan, P. Evans: Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage, J. Stored Prod. Res. 36(4), 319–340 (2000)CrossRefGoogle Scholar
  383. [383]
    N. Sahgal, R. Needham, F.J. Cabanes, N. Magan: Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: A review, Food Addit. Contamin. 24(10), 1161–1168 (2007)CrossRefGoogle Scholar
  384. [384]
    E. Gobbi, M. Falasconi, E. Torelli, G. Sberveglieri: Electronic nose predicts high and low fumonisin contamination in maize cultures, Food Res. Int. 44(4), 992–999 (2011)CrossRefGoogle Scholar
  385. [385]
    F.S. Ligler, C.R. Taitt, L.C. Shriver-Lake, K.E. Sapsford, Y. Shubin, J.P. Golden: Array biosensor for detection of toxins, Anal. Bioanal. Chem. 377(3), 469–477 (2003)CrossRefGoogle Scholar
  386. [386]
    F. Cheli, A. Campagnoli, L. Pinotti, G. Savoini, V. Dell’Orto: Electronic nose for determination of aflatoxins in maize, Biotechnol. Agron. Soc. Env. 13, 39–43 (2009)Google Scholar
  387. [387]
    F. Cheli, L. Pinotti, A. Campagnoli, E. Fusi, R. Rebucci, A. Baldi: Mycotoxin analysis, mycotoxin-producing fungi assays and mycotoxin toxicity bioassays in food mycotoxin monitoring and surveillance, Ital. J. Food Sci. 20(4), 447–462 (2008)Google Scholar
  388. [388]
    A.J. de Lucca, S.M. Boue, C. Carter-Wientjes, D. Bhatnagar: Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of aspergillus flavus grown on sterile and non-sterile cracked corn, Ann. Agricult. Env. Med. 19(1), 91–98 (2012)Google Scholar
  389. [389]
    A. Campagnoli, V. Dell’Orto, G. Savoini, F. Cheli: Screening cereals quality by electronic nose: The example of mycotoxins naturally contaminated maize and durum wheat, AIP Conf. Proc. 1137, 507–510 (2009)CrossRefGoogle Scholar
  390. [390]
    D. Abramson, R. Hulasare, R.K. York, N.D.G. White, D.S. Jayas: Mycotoxins, ergosterol, and odor volatiles in durum wheat during granary storage at 16% and 20% moisture content, J. Stored Prod. Res. 41(1), 67–76 (2005)CrossRefGoogle Scholar
  391. [391]
    R. Doraiswami, M. Manoharan: Nano bio embedded fludic substrates: System level integration for food safety, Proc. Electron. Compon. Technol. Conf. (2006) pp. 158–160Google Scholar
  392. [392]
    J. Perkowski, M. Busko, J. Chmielewski, T. Goral, B. Tyrakowska: Content of trichodiene and analysis of fungal volatiles (electronic nose) in wheat and triticale grain naturally infected and inoculated with fusarium culmorum, Int. J. Food Microbiol. 126(1/2), 127–134 (2008)CrossRefGoogle Scholar
  393. [393]
    D.S. Presicce, A. Forleo, A.M. Taurino, M. Zuppa, P. Siciliano, B. Laddomada, A. Logrieco, A. Visconti: Response evaluation of an e-nose towards contaminated wheat by fusarium poae fungi, Sens. Actuators B Chem. 118(1/2), 433–438 (2006)CrossRefGoogle Scholar
  394. [394]
    A. Campagnoli, F. Cheli, C. Polidori, M. Zaninelli, O. Zecca, G. Savoini, L. Pinotti, V. Dell’Orto: Use of the electronic nose as a screening tool for the recognition of durum wheat naturally contaminated by deoxynivalenol: A preliminary approach, Sensors 11(5), 4899–4916 (2011)CrossRefGoogle Scholar
  395. [395]
    G. Tognon, A. Campagnoli, L. Pinotti, V. Dell’Orto, F. Cheli: Implementation of the electronic nose for the identification of mycotoxins in durum wheat (triticum durum), Veterinary Research Communications 29(2), 391–393 (2005)CrossRefGoogle Scholar
  396. [396]
    F.J. Cabanes, N. Sahgal, M.R. Bragulat, N. Magan: Early discrimination of fungal species responsible of ochratoxin a contamination of wine and other grape products using an electronic nose, Mycotoxin Res. 25(4), 187–192 (2009)CrossRefGoogle Scholar
  397. [397]
    K. Tuovinen, M. Kolehmainen, H. Paakkanen: Determination and identification of pesticides from liquid matrices using ion mobility spectrometry, Anal. Chim. Acta 429(2), 257–268 (2001)CrossRefGoogle Scholar
  398. [398]
    C. Wongchoosuk, A. Wisitsoraat, A. Tuantranont, T. Kerdcharoen: Portable electronic nose based on carbon nanotube-SNO2 gas sensors and its application for detection of methanol contamination in whiskeys, Sens. Actuators B Chem. 147(2), 392–399 (2010)CrossRefGoogle Scholar
  399. [399]
    A. Hilding-Ohlsson, J.A. Fauerbach, N.J. Sacco, M.C. Bonetto, E. Corton: Voltamperometric discrimination of urea and melamine adulterated skimmed milk powder, Sensors (Switzerland) 12(9), 12220–12234 (2012)CrossRefGoogle Scholar
  400. [400]
    S. Ampuero, T. Zesiger, V. Gustafsson, A. Lunden, J.O. Bosset: Determination of trimethylamine in milk using an ms based electronic nose, Eur. Food Res. Technol. 214(2), 163–167 (2002)CrossRefGoogle Scholar
  401. [401]
    S. Zhang, C. Xie, Z. Bai, M. Hu, H. Li, D. Zeng: Spoiling and formaldehyde-containing detections in octopus with an e-nose, Food Chem. 113(4), 1346–1350 (2009)CrossRefGoogle Scholar
  402. [402]
    G. Keshri, M. Challen, T. Elliott, N. Magan: Differentiation of agaricus species and other homobasidiomycetes based on volatile production patterns using an electronic nose system, Mycol. Res. 107(5), 609–613 (2003)CrossRefGoogle Scholar
  403. [403]
    S. Balasubramanian, S. Panigrahi, C.M. Logue, M. Marchello, J.S. Sherwood: Identification of salmonella-inoculated beef using a portable electronic nose system, J. Rapid Methods Autom. Microbiol. 13(2), 71–95 (2005)CrossRefGoogle Scholar
  404. [404]
    L.R. Khot, S. Panigrahi, P. Sengupta: Development and evaluation of chemoresistive polymer sensors for low concentration detection of volatile organic compounds related to food safety applications, Sens. Instrum. Food Qual. Saf. 4(1), 20–34 (2010)CrossRefGoogle Scholar
  405. [405]
    P. Bhattacharjee, S. Panigrahi, D. Lin, C.M. Logue, J.S. Sherwood, C. Doetkott, M. Marchello: Study of headspace gases associated with salmonella contamination of sterile beef in vials using HS-SPME/GC-MS, Trans. ASABE 53(1), 173–181 (2010)CrossRefGoogle Scholar
  406. [406]
    S. Balasubramanian, S. Panigrahi, C.M. Logue, C. Doetkott, M. Marchello, J.S. Sherwood: Independent component analysis-processed electronic nose data for predicting salmonella typhimurium populations in contaminated beef, Food Control 19(3), 236–246 (2008)CrossRefGoogle Scholar
  407. [407]
    U. Siripatrawan, J.E. Linz, B.R. Harte: Detection of escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network, J. Food Prot. 69(8), 1844–1850 (2006)CrossRefGoogle Scholar
  408. [408]
    U. Siripatrawan, J.E. Linz, B.R. Harte: Electronic sensor array coupled with artificial neural network for detection of salmonella typhimurium, Sens. Actuators B Chem. 119(1), 64–69 (2006)CrossRefGoogle Scholar
  409. [409]
    U. Siripatrawan: Rapid differentiation between e. Coli and salmonella typhimurium using metal oxide sensors integrated with pattern recognition, Sens. Actuators B Chem. 133(2), 414–419 (2008)CrossRefGoogle Scholar
  410. [410]
    U. Siripatrawan, J.E. Linz, B.R. Harte: Rapid method for prediction of escherichia coli numbers using an electronic sensor array and an artificial neural network, J. Food Prot. 67(8), 1604–1609 (2004)CrossRefGoogle Scholar
  411. [411]
    U. Siripatrawan: Self-organizing algorithm for classification of packaged fresh vegetable potentially contaminated with foodborne pathogens, Sens. Actuators B Chem. 128(2), 435–441 (2008)CrossRefGoogle Scholar
  412. [412]
    S. Younts, E. Alocilja, W. Osburn, S. Marquie, J. Gray, D. Grooms: Experimental use of a gas sensor-based instrument for differentiation of escherichia coli o157:H7 from non-o157:H7 escherichia coli field isolates, J. Food Prot. 66(8), 1455–1458 (2003)CrossRefGoogle Scholar
  413. [413]
    J.W.T. Yates, J.W. Gardner, M.J. Chappell, C.S. Dow: Identification of bacterial pathogens using quadrupole mass spectrometer data and radial basis function neural networks, IEE Proc. Sci. Meas. Technol. 152(3), 97–102 (2005)CrossRefGoogle Scholar
  414. [414]
    P.P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J.P. Robinson, E.D. Hirleman, A.K. Bhunia: Label-free detection of multiple bacterial pathogens using light-scattering sensor, Biosens. Bioelectron. 24(6), 1685–1692 (2009)CrossRefGoogle Scholar
  415. [415]
    S. Balasubramanian, S. Panigrahi, B. Kottapalli, C.E. Wolf-Hall: Evaluation of an artificial olfactory system for grain quality discrimination, LWT – Food Sci. Technol. 40(10), 1815–1825 (2007)CrossRefGoogle Scholar
  416. [416]
    M. Falasconi, E. Gobbi, M. Pardo, M. Della Torre, A. Bresciani, G. Sberveglieri: Detection of toxigenic strains of fusarium verticillioides in corn by electronic olfactory system, Sens. Actuators B Chem. 108(1/2), 250–257 (2005)CrossRefGoogle Scholar
  417. [417]
    G. Hui, Y. Ni: Investigation of moldy corn fast detection based on signal-to-noise ratio spectrum analysis technique, Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agricult. Eng. 27(3), 336–340 (2011)Google Scholar
  418. [418]
    J. Eifler, E. Martinelli, M. Santonico, R. Capuano, D. Schild, C. Di Natale: Differential detection of potentially hazardous fusarium species in wheat grains by an electronic nose, Plos One 6(6), e21026 (2011)CrossRefGoogle Scholar
  419. [419]
    G. Keshri, N. Magan: Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of two fusarium spp. Using volatile mycotoxigenic strains of two production profiles and hydrolytic enzymes, J. Appl. Microbiol. 89(5), 825–833 (2000)CrossRefGoogle Scholar
  420. [420]
    R.W. Sneath, K.C. Persaud: Correlating electronic nose and sensory panel data. In: Handbook of Machine Olfaction: Electronic Nose Technology, ed. by T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner (Wiley-VCH, Weinheim 2004)Google Scholar
  421. [421]
    S. Benedetti, C. Pompei, S. Mannino: Comparison of an electronic nose with the sensory evaluation of food products by ’Triangle test’, Electroanalysis 16(21), 1801–1805 (2004)CrossRefGoogle Scholar
  422. [422]
    R. Haddad, A. Medhanie, Y. Roth, D. Harel, N. Sobel: Predicting odor pleasantness with an electronic nose, PLoS Comput Biol 6(4), e1000740 (2010)CrossRefGoogle Scholar
  423. [423]
    J. Van Durme, T. Van Elst, H. Van Langenhove: Analytical challenges in odour measurement: Linking human nose with advanced analytical techniques, Chem. Eng. Trans. 23, 61–65 (2010)Google Scholar
  424. [424]
    P. Mielle: ’Electronic noses’: Towards the objective instrumental characterization of food aroma, Trends Food Sci. Technol. 7(12), 432–438 (1996)CrossRefGoogle Scholar
  425. [425]
    K. Persaud, G. Dodd: Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature 299(5881), 352–355 (1982)CrossRefGoogle Scholar
  426. [426]
    H. Ulmer, J. Mitrovics, G. Noetzel, U. Weimar, W. Gopel: Odours and flavours identified with hybrid modular sensor systems, Sens. Actuators B Chem. 43(1–3), 24–33 (1997)CrossRefGoogle Scholar
  427. [427]
    K. Brudzewski, S. Osowski, J. Ulaczyk: Differential electronic nose of two chemo sensor arrays for odor discrimination, Sens. Actuators B Chem. 145(1), 246–249 (2010)CrossRefGoogle Scholar
  428. [428]
    M.C. Burl, B.J. Doleman, A. Schaffer, N.S. Lewis: Assessing the ability to predict human percepts of odor quality from the detector responses of a conducting polymer composite-based electronic nose, Sens. Actuators B Chem. 72(2), 149–159 (2001)CrossRefGoogle Scholar
  429. [429]
    S. Ohmori, Y. Ohno, T. Makino, T. Kashihara: Application of an electronic nose system for evaluation of unpleasant odor in coated tablets, Eur. J. Pharm. Biopharm. 59(2), 289–297 (2005)CrossRefGoogle Scholar
  430. [430]
    M. Trincavelli, S. Coradeschi, A. Loutfi: Odour classification system for continuous monitoring applications, Sens. Actuators B Chem. 139(2), 265–273 (2009)CrossRefGoogle Scholar
  431. [431]
    T. Hofmann, P. Schieberle, C. Krummel, A. Freiling, J. Bock, L. Heinert, D. Kohl: High resolution gas chromatography/selective odorant measurement by multisensor array (hrgc/somsa): A useful approach to standardise multisensor arrays for use in the detection of key food odorants, Sens. Actuators B Chem. 41(1–3), 81–87 (1997)CrossRefGoogle Scholar
  432. [432]
    K. Fujioka, M. Shirasu, Y. Manome, N. Ito, S. Kakishima, T. Minami, T. Tominaga, F. Shimozono, T. Iwamoto, K. Ikeda, K. Yamamoto, J. Murata, Y. Tomizawa: Objective display and discrimination of floral odors from amorphophallus titanum, bloomed on different dates and at different locations, using an electronic nose, Sensors 12(2), 2152–2161 (2012)CrossRefGoogle Scholar
  433. [433]
    N. Bhattacharya, B. Tudu, A. Jana, D. Ghosh, R. Bandhopadhyaya, M. Bhuyan: Preemptive identification of optimum fermentation time for black tea using electronic nose, Sens. Actuators B Chem. 131(1), 110–116 (2008)CrossRefGoogle Scholar
  434. [434]
    N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan: Monitoring of black tea fermentation process using electronic nose, J. Food Eng. 80(4), 1146–1156 (2007)CrossRefGoogle Scholar
  435. [435]
    N. Bhattacharyya, S. Seth, B. Tudu, P. Tamuly, A. Jana, D. Ghosh, R. Bandyopadhyay, M. Bhuyan, S. Sabhapandit: Detection of optimum fermentation time for black tea manufacturing using electronic nose, Sens. Actuators B Chem. 122(2), 627–634 (2007)CrossRefGoogle Scholar
  436. [436]
    M. Navratil, C. Cimander, C.F. Mandenius: On-line multisensor monitoring of yogurt and filmjolk fermentations on production scale, J. Agricult. Food Chem. 52(3), 415–420 (2004)CrossRefGoogle Scholar
  437. [437]
    C. Cimander, M. Carlsson, C.F. Mandenius: Sensor fusion for on-line monitoring of yoghurt fermentation, J. Biotechnol. 99(3), 237–248 (2002)CrossRefGoogle Scholar
  438. [438]
    P. Pani, A.A. Leva, M. Riva, A. Maestrelli, D. Torreggiani: Influence of an osmotic pre-treatment on structure-property relationships of air-dehydrated tomato slices, J. Food Eng. 86(1), 105–112 (2008)CrossRefGoogle Scholar
  439. [439]
    Z. Li, G.S.V. Raghavan, N. Wang: Carrot volatiles monitoring and control in microwave drying, LWT - Food Science and Technology 43(2), 291–297 (2010)CrossRefGoogle Scholar
  440. [440]
    R. Infante, P. Rubio, L. Contador, V. Moreno: Effect of drying process on lemon verbena (lippia citrodora kunth) aroma and infusion sensory quality, Int. J. Food Sci. Technol. 45(1), 75–80 (2010)CrossRefGoogle Scholar
  441. [441]
    M. Brambilla, P. Navarotto: Application of e-nose technology for ultra-high temperature processed partly skimmed milk production batches monitoring, Chem. Eng. Trans. 23, 171–176 (2010)Google Scholar
  442. [442]
    M. Brambilla, P. Navarotto, M. Guarino: Case study of the monitoring of ultra-high temperature processed partly skimmed milk production batches by means of an electronic nose, Trans. ASABE 52(3), 853–858 (2009)CrossRefGoogle Scholar
  443. [443]
    P. Mielle, F. Marquis: One-sensor electronic olfactometer for rapid sorting of fresh fruit juices, Sens. Actuators B Chem. 76(1–3), 470–476 (2001)CrossRefGoogle Scholar
  444. [444]
    A. Ponzoni, A. Depari, M. Falasconi, E. Comini, A. Flammini, D. Marioli, A. Taroni, G. Sberveglieri: Bread baking aromas detection by low-cost electronic nose, Sens. Actuators B Chem. 130(1), 100–104 (2008)CrossRefGoogle Scholar
  445. [445]
    S. Romani, C. Cevoli, A. Fabbri, L. Alessandrini, M. Dalla Rosa: Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control, J. Food Sci. 77(9), C960–C965 (2012)CrossRefGoogle Scholar
  446. [446]
    C. Zondervan, S. Muresan, H.G. De Jonge, E.U.T. Van Velzen, C. Wilkinson, H.H. Nijhuis, T. Leguijt: Controlling maillard reactions in the heating process of blockmilk using an electronic nose, J. Agricult. Food Chem. 47(11), 4746–4749 (1999)CrossRefGoogle Scholar
  447. [447]
    S. Benedetti, S. Drusch, S. Mannino: Monitoring of autoxidation in lcpufa-enriched lipid microparticles by electronic nose and SPME-GCMS, Talanta 78(4/5), 1266–1271 (2009)CrossRefGoogle Scholar
  448. [448]
    S. Pastorelli, L. Torri, A. Rodriguez, S. Valzacchi, S. Limbo, C. Simoneau: Solid-phase micro-extraction (SPME-GC) and sensors as rapid methods for monitoring lipid oxidation in nuts, Food Addit. Contamin. 24(11), 1219–1225 (2007)CrossRefGoogle Scholar
  449. [449]
    G.M. Grigioni, C.A. Margaria, N.A. Pensel, G. Sanchez, S.R. Vaudagna: Warmed-over flavour analysis in low temperature-long time processed meat by an ’Electronic nose’, Meat Sci. 56(3), 221–228 (2000)CrossRefGoogle Scholar
  450. [450]
    G. Echeverria, J. Graell, M.L. Lopez, J. Brezmes, X. Correig: Volatile production in ’Fuji’ Apples stored under different atmospheres measured by headspace/gas chromatography and electronic nose, Acta Hort 682, 1465–1470 (2005)CrossRefGoogle Scholar
  451. [451]
    J.S. Vestergaard, M. Martens, P. Turkki: Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage, LWT – Food Sci. Technol. 40(6), 1095–1101 (2007)CrossRefGoogle Scholar
  452. [452]
    N. Shen, S. Moizuddin, L. Wilson, S. Duvick, P. White, L. Pollak: Relationship of electronic nose analyses and sensory evaluation of vegetable oils during storage, J. Am. Oil Chem. Soc. 78(9), 937–940 (2001)CrossRefGoogle Scholar
  453. [453]
    L. Torri, N. Sinelli, S. Limbo: Shelf life evaluation of fresh-cut pineapple by using an electronic nose, Postharvest Biol. Technol. 56(3), 239–245 (2010)CrossRefGoogle Scholar
  454. [454]
    J. Brezmes, E. Llobet, X. Vilanova, J. Orts, G. Saiz, X. Correig: Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples, Sens. Actuators B Chem. 80(1), 41–50 (2001)CrossRefGoogle Scholar
  455. [455]
    H. Zhang, J. Wang: Detection of age and insect damage incurred by wheat, with an electronic nose, J. Stored Prod. Res. 43(4), 489–495 (2007)CrossRefGoogle Scholar
  456. [456]
    H. Zhang, J. Wang, X. Tian, H. Yu, Y. Yu: Optimization of sensor array and detection of stored duration of wheat by electronic nose, J. Food Eng. 82(4), 403–408 (2007)CrossRefGoogle Scholar
  457. [457]
    J. Gruber, H.M. Nascimento, E.Y. Yamauchi, R.W.C. Li, C.H.A. Esteves, G.P. Rehder, C.C. Gaylarde, M.A. Shirakawa: A conductive polymer based electronic nose for early detection of penicillium digitatum in post-harvest oranges, Mater. Sci. Eng. C 33(5), 2766–2769 (2013)CrossRefGoogle Scholar
  458. [458]
    F. Pallottino, C. Costa, F. Antonucci, M.C. Strano, M. Calandra, S. Solaini, P. Menesatti: Electronic nose application for determination of penicillium digitatum in valencia oranges, J. Sci. Food Agricult. 92(9), 2008–2012 (2012)CrossRefGoogle Scholar
  459. [459]
    M. Falasconi, I. Concina, E. Gobbi, V. Sberveglieri, A. Pulvirenti, G. Sberveglieri: Electronic nose for microbiological quality control of food products, Int. J. Electrochem. 2012, 1–12 (2012)CrossRefGoogle Scholar
  460. [460]
    S. Isoppo, P. Cornale, S. Barbera: The electronic nose: A protocol to evaluate fresh meat flavor, AIP Conf. Proc. 1137, 432–434 (2009)CrossRefGoogle Scholar
  461. [461]
    V. Vernat-Rossi, C. Garcia, R. Talon, C. Denoyer, J.L. Berdague: Rapid discrimination of meat products and bacterial strains using semiconductor gas sensors, Sens. Actuators B Chem. 37(1/2), 43–48 (1996)CrossRefGoogle Scholar
  462. [462]
    J.L. Berdague, T. Talou: Examples of semiconductor gas sensors applied to meat products, Sci. Aliments 13, 141–148 (1993)Google Scholar
  463. [463]
    S. Sankaran, S. Panigrahi, C. Young: Evaluation of nanostructured novel sensing material for food contamination applications, ASAE Annu. Meet., Vol. 8 (2007)Google Scholar
  464. [464]
    X. Tang, X. Sun, V.C.H. Wu, J. Xie, Y. Pan, Y. Zhao, P.K. Malakar: Predicting shelf-life of chilled pork sold in china, Food Control 32(1), 334–340 (2013)CrossRefGoogle Scholar
  465. [465]
    K.M. Horvath, Z. Seregely, I. Dalmadi, E. Andrassy, J. Farkas: Estimation of bacteriological spoilage of pork cutlets by electronic nose, Acta Microbiol. Immunol. Hung. 54(2), 179–194 (2007)CrossRefGoogle Scholar
  466. [466]
    X. Hong, J. Wang: Discrimination and prediction of pork freshness by e-nose, IFIP Adv. Inf. Commun. Technol. (AICT), Vol. 370 (2012) pp. 1–14Google Scholar
  467. [467]
    X.Y. Tian, Q. Cai, Y.M. Zhang: Rapid classification of hairtail fish and pork freshness using an electronic nose based on the pca method, Sensors 12(1), 260–277 (2012)Google Scholar
  468. [468]
    D. Wang, X. Wang, T. Liu, Y. Liu: Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine, Meat Sci. 90(2), 373–377 (2012)CrossRefGoogle Scholar
  469. [469]
    S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, M. Marchello: Neural-network-integrated electronic nose system for identification of spoiled beef, LWT – Food Sci. Technol. 39(2), 135–145 (2006)CrossRefGoogle Scholar
  470. [470]
    S. Panigrahi, S. Balasubramanian, H. Gu, C.M. Logue, M. Marchello: Design and development of a metal oxide based electronic nose for spoilage classification of beef, Sens. Actuators B Chem. 119(1), 2–14 (2006)CrossRefGoogle Scholar
  471. [471]
    S. Balasubramanian, S. Panigrahi, C.M. Logue, H. Gu, M. Marchello: Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification, J. Food Eng. 91(1), 91–98 (2009)CrossRefGoogle Scholar
  472. [472]
    N. El Barbri, E. Llobet, N. El Bari, X. Correig, B. Bouchikhi: Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat, Sensors 8(1), 142–156 (2008)CrossRefGoogle Scholar
  473. [473]
    X. Hong, J. Wang, Z. Hai: Discrimination and prediction of multiple beef freshness indexes based on electronic nose, Sens. Actuators B Chem. 161(1), 381–389 (2012)CrossRefGoogle Scholar
  474. [474]
    O.S. Papadopoulou, E.Z. Panagou, F.R. Mohareb, G.J.E. Nychas: Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis, Food Res. Int. 50(1), 241–249 (2013)CrossRefGoogle Scholar
  475. [475]
    T. Hansen, M.A. Petersen, D.V. Byrne: Sensory based quality control utilising an electronic nose and GC-MS analyses to predict end-product quality from raw materials, Meat Sci. 69(4), 621–634 (2005)CrossRefGoogle Scholar
  476. [476]
    E. Borch, M.L. Kant-Muermans, Y. Blixt: Bacterial spoilage of meat and cured meat products, Int. J. Food Microbiol. 33(1), 103–120 (1996)CrossRefGoogle Scholar
  477. [477]
    S. Limbo, L. Torri, N. Sinelli, L. Franzetti, E. Casiraghi: Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures, Meat Sci. 84(1), 129–136 (2010)CrossRefGoogle Scholar
  478. [478]
    F. Winquist, E.G. Hornsten, H. Sundgren, I. Lundstrom: Performance of an electronic nose for quality estimation of ground meat, Meas. Sci. Technol. 4(12), 1493–1500 (1993)CrossRefGoogle Scholar
  479. [479]
    Y. Blixt, E. Borch: Using an electronic nose for determining the spoilage of vacuum-packaged beef, Int. J. Food Microbiol. 46(2), 123–134 (1999)CrossRefGoogle Scholar
  480. [480]
    C. Di Natale, J.A.J. Brunink, F. Bungaro, F. Davide, A. D’Amico, R. Paolesse, T. Boschi, M. Faccio, G. Ferri: Recognition of fish storage time by a metalloporphyrins-coated QMB sensor array, Meas. Sci. Technol. 7(8), 1103–1114 (1996)CrossRefGoogle Scholar
  481. [481]
    J. Chantarachoti, A.C.M. Oliveira, B.H. Himelbloom, C.A. Crapo, D.G. McLachlan: Portable electronic nose for detection of spoiling alaska pink salmon (oncorhynchus gorbuscha), J. Food Sci. 71(5), S414–S421 (2006)CrossRefGoogle Scholar
  482. [482]
    W.X. Du, C.M. Lin, T. Huang, J. Kim, M. Marshall, C.I. Wei: Potential application of the electronic nose for quality assessment of salmon fillets under various storage conditions, J. Food Sci. 67(1), 307–313 (2002)CrossRefGoogle Scholar
  483. [483]
    S. Limbo, N. Sinelli, L. Torri, M. Riva: Freshness decay and shelf life predictive modelling of european sea bass (dicentrarchus labrax) applying chemical methods and electronic nose, LWT - Food Science and Technology 42(5), 977–984 (2009)CrossRefGoogle Scholar
  484. [484]
    W. Yongwei, J. Wang, B. Zhou, Q. Lu: Monitoring storage time and quality attribute of egg based on electronic nose, Anal. Chim. Acta 650(2), 183–188 (2009)CrossRefGoogle Scholar
  485. [485]
    M. Liu, L. Pan, K. Tu, P. Liu: Determination of egg freshness during shelf life with electronic nose, Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agricult. Eng. 26(4), 317–321 (2010)Google Scholar
  486. [486]
    M. Suman, G. Riani, E. Dalcanale: Mos-based artificial olfactory system for the assessment of egg products freshness, Sens. Actuators B Chem. 125(1), 40–47 (2007)CrossRefGoogle Scholar
  487. [487]
    R. Dutta, E.L. Hines, J.W. Gardner, D.D. Udrea, P. Boilot: Non-destructive egg freshness determination: An electronic nose based approach, Meas. Sci. Technol. 14(2), 190–198 (2003)CrossRefGoogle Scholar
  488. [488]
    I. Concina, M. Falasconi, E. Gobbi, F. Bianchi, M. Musci, M. Mattarozzi, M. Pardo, A. Mangia, M. Careri, G. Sbeveglieri: Early detection of microbial contamination in processed tomato by electronic nose, Food Control 20, 837–880 (2009)CrossRefGoogle Scholar
  489. [489]
    V. Rossi, R. Talon, J.L. Berdague: Rapid discrimination of micrococcaceae species using semiconductor gas sensors, J. Microbiol. Methods 24(2), 183–190 (1995)CrossRefGoogle Scholar
  490. [490]
    E. Gobbi, M. Falasconi, I. Concina, G. Mantero, F. Bianchi, M. Mattarozzi, M. Musci, G. Sberveglieri: Electronic nose and alicyclobacillus spp. Spoilage of fruit juices: An emerging diagnostic tool, Food Control 21(10), 1374–1382 (2010)CrossRefGoogle Scholar
  491. [491]
    E.T. Champagne, J.F. Thompson, K.L. Bett-Garber, R. Mutters, J.A. Miller, E. Tan: Impact of storage of freshly harvested paddy rice on milled white rice flavor, Cereal Chem. 81(4), 444–449 (2004)CrossRefGoogle Scholar
  492. [492]
    B.P.J. de Lacy Costello, R.J. Ewen, H. Gunson, N.M. Ratcliffe, P.S. Sivanand, P.T.N. Spencer-Phillips: A prototype sensor system for the early detection of microbially linked spoilage in stored wheat grain, Meas. Sci. Technol. 14(4), 397–409 (2003)CrossRefGoogle Scholar
  493. [493]
    T.A. Emadi, C. Shafai, D.J. Thomson, M.S. Freund, N.D.G. White, D.S. Jayas: Polymer-based chemicapacitor sensor for 1-octanol and relative humidity detections at different temperatures and frequencies, IEEE Sens. J. 13(2), 519–527 (2013)CrossRefGoogle Scholar
  494. [494]
    A. Kubiak, T. Wenzl, F. Ulberth: Evaluation of the quality of postharvest rapeseed by means of an electronic nose, J. Sci. Food Agricult. 92(10), 2200–2206 (2012)CrossRefGoogle Scholar
  495. [495]
    R. Needham, J. Williams, N. Beales, P. Voysey, N. Magan: Early detection and differentiation of spoilage of bakery products, Sens. Actuators B Chem. 106(1), 20–23 (2005)CrossRefGoogle Scholar
  496. [496]
    M. Vinaixa, S. Marin, J. Brezmes, E. Llobet, X. Vilanova, X. Correig, A. Ramos, V. Sanchis: Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometry, J. Agricult. Food Chem. 52(20), 6068–6074 (2004)CrossRefGoogle Scholar
  497. [497]
    S. Marin, M. Vinaixa, J. Brezmes, E. Llobet, X. Vilanova, X. Correig, A.J. Ramos, V. Sanchis: Use of a ms-electronic nose for prediction of early fungal spoilage of bakery products, Int. J. Food Microbiol. 114(1), 10–16 (2007)CrossRefGoogle Scholar
  498. [498]
    G. Keshri, P. Voysey, N. Magan: Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays, J. Appl. Microbiol. 92(1), 165–172 (2002)CrossRefGoogle Scholar
  499. [499]
    C. Bhatt, J. Nagaraju: A polypyrrole based gas sensor for detection of volatile organic compounds (vocs) produced from a wheat bread, Sens. Instrum. Food Qual. Saf. 5(3), 128–136 (2011)CrossRefGoogle Scholar
  500. [500]
    W. Cynkar, D. Cozzolino, B. Dambergs, L. Janik, M. Gishen: Feasibility study on the use of a head space mass spectrometry electronic nose (ms e_nose) to monitor red wine spoilage induced by brettanomyces yeast, Sens. Actuators B Chem. 124(1), 167–171 (2007)CrossRefGoogle Scholar
  501. [501]
    K. Karlsoj, P.V. Nielsen, T.O. Larsen: Prediction of penicillium expansum spoilage and patulin concentration in apples used for apple juice production by electronic nose analysis, J. Agricult. Food Chem. 55(11), 4289–4298 (2007)CrossRefGoogle Scholar
  502. [502]
    T. Eklov, G. Johansson, F. Winquist, I. Lundstrom: Monitoring sausage fermentation using an electronic nose, J. Sci. Food Agricult. 76(4), 525–532 (1998)CrossRefGoogle Scholar
  503. [503]
    J. Trihaas, L. Vognsen, P.V. Nielsen: Electronic nose: New tool in modelling the ripening of danish blue cheese, Int. Dairy J. 15(6/9), 679–691 (2005)CrossRefGoogle Scholar
  504. [504]
    M. Falasconi, M. Pardo, G. Sberveglieri, I. Ricco, A. Bresciani: The novel eos835 electronic nose and data analysis for evaluating coffee ripening, Sens. Actuators B Chem. 110(1), 73–80 (2005)CrossRefGoogle Scholar
  505. [505]
    M. Maciejewska, A. Szczurek, Z. Kerenyi: Utilisation of first principal component extracted from gas sensor measurements as a process control variable in wine fermentation, Sens. Actuators B Chem. 115(1), 170–177 (2006)CrossRefGoogle Scholar
  506. [506]
    F. Maul, S.A. Sargent, M.O. Balaban, E.A. Baldwin, D.J. Huber, C.A. Sims: Aroma volatile profiles from ripe tomatoes are influenced by physiological maturity at harvest: An application for electronic nose technology, J. Am. Soc. Hort. Sci. 123(6), 1094–1101 (1998)Google Scholar
  507. [507]
    V. Messina, P.G. Dominguez, A.M. Sancho, N. Walsoe de Reca, F. Carrari, G. Grigioni: Tomato quality during short-term storage assessed by colour and electronic nose, Int. J. Electrochem. 2012, 687429 (2012)CrossRefGoogle Scholar
  508. [508]
    A. Supriyadi, K. Shimizu, M. Suzuki, K. Yoshida, T. Muto, A. Fujita, N. Tomita, N. Watanabe: Maturity discrimination of snake fruit (salacca edulis reinw.) cv. Pondoh based on volatiles analysis using an electronic nose device equipped with a sensor array and fingerprint mass spectrometry, Flavour Fragr. J. 19(1), 44–50 (2004)CrossRefGoogle Scholar
  509. [509]
    L.P. Pathange, P. Mallikarjunan, R.P. Marini, S. O’Keefe, D. Vaughan: Non-destructive evaluation of apple maturity using an electronic nose system, J. Food Eng. 77(4), 1018–1023 (2006)CrossRefGoogle Scholar
  510. [510]
    M. Vanoli, M. Buccheri: Overview of the methods for assessing harvest maturity, Stewart Postharvest Rev. 8(1), 1–11 (2012)CrossRefGoogle Scholar
  511. [511]
    U. Herrmann, T. Jonischkeit, J. Bargon, U. Hahn, Q.Y. Li, C.A. Schalley, E. Vogel, F. Vogtle: Monitoring apple flavor by use of quartz microbalances, Anal. Bioanalyt. Chem. 372(5-6), 611–614 (2002)CrossRefGoogle Scholar
  512. [512]
    M. Lebrun, A. Plotto, K. Goodner, M.N. Ducamp, E. Baldwin: Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography, Postharvest Biol. Technol. 48(1), 122–131 (2008)CrossRefGoogle Scholar
  513. [513]
    B.G. Defilippi, W.S. Juan, H. Valdes, M.A. Moya-Leon, R. Infante, R. Campos-Vargas: The aroma development during storage of castlebrite apricots as evaluated by gas chromatography, electronic nose, and sensory analysis, Postharvest Biol. Technol. 51(2), 212–219 (2009)CrossRefGoogle Scholar
  514. [514]
    X. Zhang, Y. Qi, X. Yang, H. Jia: Evaluation of maturity of peach by electronic nose, J. South China Agric. Univ 1, 1–4 (2012)CrossRefGoogle Scholar
  515. [515]
    A.C. Romain, J. Nicolas: Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview, Sens. Actuators B Chem. 146(2), 502–506 (2010)CrossRefGoogle Scholar
  516. [516]
    L. Feng, C.J. Musto, J.W. Kemling, S.H. Lim, K.S. Suslick: A colorimetric sensor array for identification of toxic gases below permissible exposure limits, Chem. Commun. 46(12), 2037–2039 (2010)CrossRefGoogle Scholar
  517. [517]
    R. Dutta, D. Morgan, N. Baker, J.W. Gardner, E.L. Hines: Identification of staphylococcus aureus infections in hospital environment: Electronic nose based approach, Sens. Actuators B Chem. 109(2), 355–362 (2005)CrossRefGoogle Scholar
  518. [518]
    J. Trevathan, R. Johnstone, T. Chiffings, I. Atkinson, N. Bergmann, W. Read, S. Theiss, T. Myers, T. Stevens: Semat - the next generation of inexpensive marine environmental monitoring and measurement systems, Sensors (Switzerland) 12(7), 9711–9748 (2012)CrossRefGoogle Scholar
  519. [519]
    W. Tsujita, A. Yoshino, H. Ishida, T. Moriizumi: Gas sensor network for air-pollution monitoring, Sens. Actuators B Chem. 110(2), 304–311 (2005)CrossRefGoogle Scholar
  520. [520]
    G. Parcsi, S.M. Pillai, J.H. Sohn, E. Gallagher, M. Dunlop, M. Atzeni, C. Lobsey, K. Murphy, R.M. Stuetz: Optimising non-specific sensor arrays for poultry emission monitoring using GC-MS/O, Proc. 7th Int. Conf. Intell. Sens. Sens. Netw. Inf. Process. (ISSNIP) (2011) pp. 205–210Google Scholar
  521. [521]
    A.H. Abdullah, A.Y.M. Shakaff, A.H. Adom, A. Zakaria, F.S.A. Saad, L.M. Kamarudin: Chicken farm malodour monitoring using portable electronic nose system, Chem. Eng. Trans. 30, 55–60 (2012)Google Scholar
  522. [522]
    S. Nimmermark: Use of electronic noses for detection of odour from animal production facilities: A review, Water Sci. Technol. 44, 33–41 (2001)Google Scholar
  523. [523]
    J.H. Sohn, M. Dunlop, N. Hudson, T.I. Kim, Y.H. Yoo: Non-specific conducting polymer-based array capable of monitoring odour emissions from a biofiltration system in a piggery building, Sens. Actuators B Chem. 135(2), 455–464 (2009)CrossRefGoogle Scholar
  524. [524]
    P.G. Micone, C. Guy: Odour quantification by a sensor array: An application to landfill gas odours from two different municipal waste treatment works, Sens. Actuators B Chem. 120(2), 628–637 (2007)CrossRefGoogle Scholar
  525. [525]
    K. Boholt, K. Andreasen, F. Den Berg, T. Hansen: A new method for measuring emission of odour from a rendering plant using the danish odour sensor system (doss) artificial nose, Sens. Actuators B Chem. 106(1), 170–176 (2005)CrossRefGoogle Scholar
  526. [526]
    L. Capelli, S. Sironi, P. Centola, R. Del Rosso, M. Il Grande: Electronic noses for the continuous monitoring of odours from a wastewater treatment plant at specific receptors: Focus on training methods, Sens. Actuators B Chem. 131(1), 53–62 (2008)CrossRefGoogle Scholar
  527. [527]
    J. Nicolas, A.C. Romain, C. Ledent: The electronic nose as a warning device of the odour emergence in a compost hall, Sens. Actuators B Chem. 116(1/2), 95–99 (2006)CrossRefGoogle Scholar
  528. [528]
    F.L. Dickert, P.A. Lieberzeit, P. Achatz, C. Palfinger, M. Fassnauer, E. Schmid, W. Werther, G. Horner: Qcm array for on-line-monitoring of composting procedures, Analyst 129(5), 432–437 (2004)CrossRefGoogle Scholar
  529. [529]
    K.C. Persaud, S.M. Khaffaf, P.J. Hobbs, T.H. Misselbrook, R.W. Sneath: Application of conducting polymer odor sensing arrays to agricultural malodor monitoring, Chem. Sens. 21(5), 495–505 (1996)CrossRefGoogle Scholar
  530. [530]
    L. Dentoni, L. Capelli, S. Sironi, R. Del Rosso, S. Zanetti, M.D. Torre: Development of an electronic nose for environmental odour monitoring, Sensors (Switzerland) 12(11), 14363–14381 (2012)CrossRefGoogle Scholar
  531. [531]
    E. Martinelli, E. Zampetti, S. Pantalei, F. Lo Castro, M. Santonico, G. Pennazza, R. Paolesse, C. Di Natale, A. D’Amico, F. Giannini, G. Mascetti, V. Cotronei: Design and test of an electronic nose for monitoring the air quality in the international space station, Microgravity Sci. Technol. 19(5/6), 60–64 (2007)CrossRefGoogle Scholar
  532. [532]
    S. Zampolli, I. Elmi, F. Ahmed, M. Passini, G.C. Cardinali, S. Nicoletti, L. Dori: An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications, Sens. Actuators B Chem. 101(1/2), 39–46 (2004)CrossRefGoogle Scholar
  533. [533]
    M. Kuske, A.C. Romain, J. Nicolas: Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments?, Build. Env. 40(6), 824–831 (2005)CrossRefGoogle Scholar
  534. [534]
    M.A. Ryan, A.V. Shevade, H. Zhou, M.L. Homer: Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring, MRS Bulletin 29(10), 714–719 (2004)CrossRefGoogle Scholar
  535. [535]
    H. Willers, P. de Gijsel, N. Ogink, A. D’Amico, E. Martinelli, C. Di Natale, N. van Ras, J. van der Waarde: Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose, Water Sci. Technol. 50, 93–100 (2004)Google Scholar
  536. [536]
    H. Schleibinger, D. Laussmann, C.G. Bornehag, D. Eis, H. Rueden: Microbial volatile organic compounds in the air of moldy and mold-free indoor environments, Indoor Air 18(2), 113–124 (2008)CrossRefGoogle Scholar
  537. [537]
    A.D. Wilson: Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment, Proc. Technol 1, 453–463 (2012)CrossRefGoogle Scholar
  538. [538]
    D. Suriano, R. Rossi, M. Alvisi, G. Cassano, V. Pfister, M. Penza, L. Trizio, M. Brattoli, M. Amodio, G. De Gennaro: A portable sensor system for air pollution monitoring and malodours olfactometric control, Lect. Notes Electr. Eng. 109, 87–92 (2012)CrossRefGoogle Scholar
  539. [539]
    U.B. Gawas, V.M.S. Verenkar, D.R. Patil: Nanostructured ferrite based electronic nose sensitive to ammonia at room temperature, Sens. Transducers 134(11), 45–55 (2011)Google Scholar
  540. [540]
    X. Zhang, B. Yang, X. Wang, C. Luo: Effect of plasma treatment on multi-walled carbon nanotubes for the detection of H2S and SO2, Sensors (Switzerland) 12(7), 9375–9385 (2012)CrossRefGoogle Scholar
  541. [541]
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions: Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors 10(6), 5469–5502 (2010)CrossRefGoogle Scholar
  542. [542]
    S.M.A. Durrani, M.F. Al-Kuhaili, I.A. Bakhtiari, M.B. Haider: Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films, Sensors 12(3), 2598–2609 (2012)CrossRefGoogle Scholar
  543. [543]
    C. Xie, L. Xiao, M. Hu, Z. Bai, X. Xia, D. Zeng: Fabrication and formaldehyde gas-sensing property of ZNO-MNO2 coplanar gas sensor arrays, Sens. Actuators B Chem. 145(1), 457–463 (2010)CrossRefGoogle Scholar
  544. [544]
    R.H. Farahi, A. Passian, L. Tetard, T. Thundat: Critical issues in sensor science to aid food and water safety, ACS Nano 6(6), 4548–4556 (2012)CrossRefGoogle Scholar
  545. [545]
    A. Lamagna, S. Reich, D. Rodriguez, A. Boselli, D. Cicerone: The use of an electronic nose to characterize emissions from a highly polluted river, Sens. Actuators B Chem. 131(1), 121–124 (2008)CrossRefGoogle Scholar
  546. [546]
    J. Goschnick, I. Koronczi, M. Frietsch, I. Kiselev: Water pollution recognition with the electronic nose kamina, Sens. Actuators B Chem. 106(1), 182–186 (2005)CrossRefGoogle Scholar
  547. [547]
    S. Singh, E.L. Hines, J.W. Gardner: Fuzzy neural computing of coffee and tainted-water data from an electronic nose, Sens. Actuators B Chem. 30(3), 185–190 (1996)CrossRefGoogle Scholar
  548. [548]
    A. Catarina Bastos, N. Magan: Potential of an electronic nose for the early detection and differentiation between streptomyces in potable water, Sens. Actuators B Chem. 116(1/2), 151–155 (2006)CrossRefGoogle Scholar
  549. [549]
    R.M. Stuetz: Non-specific monitoring to resolve intermittent pollutant problems associated with wastewater treatment and potable supply, Water Sci. Technol. 49, 137–143 (2004)Google Scholar
  550. [550]
    P. Littarru: Environmental odours assessment from waste treatment plants: Dynamic olfactometry in combination with sensorial analysers ’Electronic noses’, Waste Manag. 27(2), 302–309 (2007)CrossRefGoogle Scholar
  551. [551]
    W. Bourgeois, G. Gardey, M. Servieres, R.M. Stuetz: A chemical sensor array based system for protecting wastewater treatment plants, Sens. Actuators B Chem. 91(1–3), 109–116 (2003)CrossRefGoogle Scholar
  552. [552]
    K.C. Persaud: Medical applications of odor-sensing devices, Int. J. Lower Extremity Wounds 4(1), 50–56 (2005)CrossRefGoogle Scholar
  553. [553]
    E.R. Thaler, C.W. Hanson: Medical applications of electronic nose technology, Expert Rev. Med. Dev. 2(5), 559–566 (2005)CrossRefGoogle Scholar
  554. [554]
    A.P.F. Turner, N. Magan: Electronic noses and disease diagnostics, Nature Rev. Microbiol. 2(2), 160–166 (2004)CrossRefGoogle Scholar
  555. [555]
    A.K. Pavlou, N. Magan, J.M. Jones, J. Brown, P. Klatser, A.P.F. Turner: Detection of mycobacterium tuberculosis (tb) in vitro and in situ using an electronic nose in combination with a neural network system, Biosens. Bioelectron. 20(3), 538–544 (2004)CrossRefGoogle Scholar
  556. [556]
    N. Sahgal, B. Monk, M. Wasil, N. Magan: Trichophyton species: Use of volatile fingerprints for rapid identification and discrimination, Br. J. Dermatol. 155(6), 1209–1216 (2006)CrossRefGoogle Scholar
  557. [557]
    A. Pavlou, A.P.F. Turner, N. Magan: Recognition of anaerobic bacterial isolates in vitro using electronic nose technology, Lett. Appl. Microbiol. 35(5), 366–369 (2002)CrossRefGoogle Scholar
  558. [558]
    A.D. Parry, P.R. Chadwick, D. Simon, B. Oppenheim, C.N. McCollum: Leg ulcer odour detection identifies beta-haemolytic streptococcal infection, J. Wound Care 4(9), 404–406 (1995)CrossRefGoogle Scholar
  559. [559]
    C.L. Whittle, S. Fakharzadeh, J. Eades, G. Preti: Human breath odors and their use in diagnosis, Ann. NY Acad. Sci. 1098, 252–266 (2007)CrossRefGoogle Scholar
  560. [560]
    W. Cao, Y. Duan: Breath analysis: Potential for clinical diagnosis and exposure assessment, Clin. Chem. 52(5), 800–811 (2006)CrossRefGoogle Scholar
  561. [561]
    M. McCulloch, T. Jezierski, M. Broffman, A. Hubbard, K. Turner, T. Janecki: Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers, Integr. Cancer Ther. 5(1), 30–39 (2006)CrossRefGoogle Scholar
  562. [562]
    E.P. Shnayder, M.P. Moshkin, D.V. Petrovskii, A.I. Shevela, A.N. Babko, V.G. Kulikov: Detection of helicobacter pylori infection by examination of human breath odor using electronic nose bloodhound-214st, AIP Conf. Proc., Vol. 1137 (2009) pp. 523–524Google Scholar
  563. [563]
    A.K. Pavlou, N. Magan, D. Sharp, J. Brown, H. Barr, A.P.F. Turner: An intelligent rapid odour recognition model in discrimination of helicobacter pylori and other gastroesophageal isolates in vitro, Biosens. Bioelectron. 15(7-8), 333–342 (2000)CrossRefGoogle Scholar
  564. [564]
    S.T. Chambers, M. Syhre, D.R. Murdoch, F. McCartin, M.J. Epton: Detection of 2-pentylfuran in the breath of patients with aspergillus fumigatus, Med. Mycol. 47(5), 468–476 (2009)CrossRefGoogle Scholar
  565. [565]
    M. Syhre, J.M. Scotter, S.T. Chambers: Investigation into the production of 2-pentylfuran by aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples, Med. Mycol. 46(3), 209–215 (2008)CrossRefGoogle Scholar
  566. [566]
    T. Gibson, A. Kolk, K. Reither, S. Kuipers, V. Hallam: Predictive detection of tuberculosis using electronic nose technology, AIP Conf. Proc. 1137, 473–474 (2009)CrossRefGoogle Scholar
  567. [567]
    R. Fend, C. Bessant, A.J. Williams, A.C. Woodman: Monitoring haemodialysis using electronic nose and chemometrics, Biosens. Bioelectron. 19(12), 1581–1590 (2004)CrossRefGoogle Scholar
  568. [568]
    N.G. Hockstein, E.R. Thaler, Y. Lin, D.D. Lee, C.W. Hanson: Correlation of pneumonia score with electronic nose signature: A prospective study, Ann. Otol. Rhinol. Laryngol. 114(7), 504–508 (2005)CrossRefGoogle Scholar
  569. [569]
    S.Y. Lai, O.F. Deffenderfer, W. Hanson, M.P. Phillips, E.R. Thaler: Identification of upper respiratory bacterial pathogens with the electronic nose, Laryngoscope 112(6), 975–979 (2002)CrossRefGoogle Scholar
  570. [570]
    J.B. Yu, H.G. Byun, M.S. So, J.S. Huh: Analysis of diabetic patient’s breath with conducting polymer sensor array, Sens. Actuators B Chem. 108(1/2), 305–308 (2005)CrossRefGoogle Scholar
  571. [571]
    M. Gill, G.R. Graff, A.J. Adler, R.A. Dweik: Validation study of fractional exhaled nitric oxide measurements using a handheld monitoring device, J. Asthma 43(10), 731–734 (2006)CrossRefGoogle Scholar
  572. [572]
    A. Nonaka, M. Tanaka, H. Anguri, H. Nagata, J. Kita, S. Shizukuishi: Clinical assessment of oral malodor intensity expressed as absolute value using an electronic nose, Oral Dis. 11, 35–36 (2005) suppl. 1 Google Scholar
  573. [573]
    A. Velasquez, C.M. Duran, O. Gualdron, J.C. Rodriguez, L. Manjarres: Electronic nose to detect patients with copd from exhaled breath, AIP Conf. Proc. 1137, 452–454 (2009)CrossRefGoogle Scholar
  574. [574]
    S. Dragonieri, P. Brinkman, E. Mouw, A.H. Zwinderman, P. Carratu, O. Resta, P.J. Sterk, R.E. Jonkers: An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls, Respir. Med. 107(7), 1073–1078 (2013)CrossRefGoogle Scholar
  575. [575]
    E.I. Mohamed, R. Linder, G. Perriello, N. Di Daniele, S.J. Poppl, A. De Lorenzo: Predicting type 2 diabetes using an electronic nose-based artificial neural network analysis, Diabetes Nutr. Metab. Clin. Exp. 15(4), 215–221 (2002)Google Scholar
  576. [576]
    V. Kodogiannis, E. Wadge: The use of gas-sensor arrays to diagnose urinary tract infections, Int. J. Neural Syst. 15(5), 363–376 (2005)CrossRefGoogle Scholar
  577. [577]
    S. Aathithan, J.C. Plant, A.N. Chaudry, G.L. French: Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyzer with multiple conducting polymer sensors, J. Clin. Microbiol. 39(7), 2590–2593 (2001)CrossRefGoogle Scholar
  578. [578]
    A.K. Pavlou, N. Magan, C. McNulty, J.M. Jones, D. Sharp, J. Brown, A.P.F. Turner: Use of an electronic nose system for diagnoses of urinary tract infections, Biosens. Bioelectron. 17(10), 893–899 (2002)CrossRefGoogle Scholar
  579. [579]
    P. Hay, A. Tummon, M. Ogunfile, A. Adebiyi, A. Adefowora: Evaluation of a novel diagnostic test for bacterial vaginosis: ’The electronic nose’, Int. J. STD AIDS 14(2), 114–118 (2003)CrossRefGoogle Scholar
  580. [580]
    Y.J. Lin, H.R. Guo, Y.H. Chang, M.T. Kao, H.H. Wang, R.I. Hong: Application of the electronic nose for uremia diagnosis, Sens. Actuators B Chem. 76(1–3), 177–180 (2001)CrossRefGoogle Scholar
  581. [581]
    R.P. Arasaradnam, N. Quraishi, I. Kyrou, C.U. Nwokolo, M. Joseph, S. Kumar, K.D. Bardhan, J.A. Covington: Insights into ’fermentonomics’: Evaluation of volatile organic compounds (vocs) in human disease using an electronic ’e-nose’, J. Med. Eng. Technol. 35(2), 87–91 (2011)CrossRefGoogle Scholar
  582. [582]
    R.F. Machado, D. Laskowski, O. Deffenderfer, T. Burch, S. Zheng, P.J. Mazzone, T. Mekhail, C. Jennings, J.K. Stoller, J. Pyle, J. Duncan, R.A. Dweik, S.C. Erzurum: Detection of lung cancer by sensor array analyses of exhaled breath, Am. J. Respir. Crit. Care Med. 171(11), 1286–1291 (2005)CrossRefGoogle Scholar
  583. [583]
    C. Di Natale, A. Macagnano, E. Martinelli, R. Paolesse, G. D’Arcangelo, C. Roscioni, A. Finazzi-Agrò, A. D’Amico: Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors, Biosens. Bioelectron. 18(10), 1209–1218 (2003)CrossRefGoogle Scholar
  584. [584]
    X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, H. Pan: A study of an electronic nose for detection of lung cancer based on a virtual saw gas sensors array and imaging recognition method, Meas. Sci. Technol. 16(8), 1535–1546 (2005)CrossRefGoogle Scholar
  585. [585]
    H. Yu, L. Xu, M. Cao, X. Chen, P. Wang, J. Jiao, Y. Wang: Detection volatile organic compounds in breath as markers of lung cancer using a novel electronic nose, Proc. IEEE Sens. 2, 1333–1337 (2003)Google Scholar
  586. [586]
    S. Dragonieri, M.P. Van Der Schee, T. Massaro, N. Schiavulli, P. Brinkman, A. Pinca, P. Carratu, A. Spanevello, O. Resta, M. Musti, P.J. Sterk: An electronic nose distinguishes exhaled breath of patients with malignant pleural mesothelioma from controls, Lung Cancer 75(3), 326–331 (2012)CrossRefGoogle Scholar
  587. [587]
    J. Li, Y. Peng, Y. Duan: Diagnosis of breast cancer based on breath analysis: An emerging method, Crit. Rev. Oncol./Hematol. 87(1), 28–40 (2013)CrossRefGoogle Scholar
  588. [588]
    F. Pallottino, C. Costa, F. Antonucci, M.C. Strano, M. Calandra, S. Solaini, P. Menesatti: Electronic nose application for determination of penicillium digitatum in valencia oranges, J. Sci. Food Agricult. 92(a), 2008–2012 (2012)CrossRefGoogle Scholar
  589. [589]
    E. Baldwin, A. Plotto, J. Manthey, G. McCollum, J. Bai, M. Irey, R. Cameron, G. Luzio: Effect of liberibacter infection (huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: Chemical and physical analyses, J. Agricult. Food Chem. 58(2), 1247–1262 (2010)CrossRefGoogle Scholar
  590. [590]
    R. Ghaffari, F. Zhang, D. Iliescu, E. Hines, M. Leeson, R. Napier, J. Clarkson: Early detection of diseases in tomato crops: An electronic nose and intelligent systems approach, Proc. 2010 Int. J. Conf. Neural Netw. (2010) pp. 1–6Google Scholar
  591. [591]
    M.W.C.C. Greenshields, M.A. Mamo, N.J. Coville, A.P. Spina, D.F. Rosso, E.C. Latocheski, J.G. Destro, I.C. Pimentel, I.A. Hummelgen: Electronic detection of drechslera sp. Fungi in charentais melon (cucumis melo naudin) using carbon-nanostructure-based sensors, J. Agricult. Food Chem. 60(42), 10420–10425 (2012)CrossRefGoogle Scholar
  592. [592]
    F. Spinelli, A. Cellini, J.L. Vanneste, M.T. Rodriguez-Estrada, G. Costa, S. Savioli, F.J.M. Harren, S.M. Cristescu: Emission of volatile compounds by erwinia amylovora: Biological activity in vitro and possible exploitation for bacterial identification, Trees Struct. Funct. 26(1), 141–152 (2012)CrossRefGoogle Scholar
  593. [593]
    A.D. Wilson, D.G. Lester, C.S. Oberle: Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes, Phytopathol. 94(5), 419–431 (2004)CrossRefGoogle Scholar
  594. [594]
    F. Spinelli, M. Noferini, J.L. Vanneste, G. Costa: Potential of the electronic-nose for the diagnosis of bacterial and fungal diseases in fruit trees, EPPO Bull. 40(1), 59–67 (2010)CrossRefGoogle Scholar
  595. [595]
    S. Blasioli, E. Biondi, I. Braschi, U. Mazzucchi, C. Bazzi, C.E. Gessa: Electronic nose as an innovative tool for the diagnosis of grapevine crown gall, Anal. Chim. Acta 672(1/2), 20–24 (2010)CrossRefGoogle Scholar
  596. [596]
    F. Hahn: Actual pathogen detection: Sensors and algorithms – A review, Algorithms 2(1), 301–338 (2009)CrossRefGoogle Scholar
  597. [597]
    R.M.C. Jansen, J. Wildt, I.F. Kappers, H.J. Bouwmeester, J.W. Hofstee, E.J. Van Henten: Detection of diseased plants by analysis of volatile organic compound emission, Annu. Rev. Phytopathol. 49, 157–174 (2011)CrossRefGoogle Scholar
  598. [598]
    M.A. Markom, A.Y.M. Shakaff, A.H. Adom, M.N. Ahmad, W. Hidayat, A.H. Abdullah, N.A. Fikri: Intelligent electronic nose system for basal stem rot disease detection, Comput. Electron. Agricult. 66(2), 140–146 (2009)CrossRefGoogle Scholar
  599. [599]
    P. Boilot, E.L. Hines, J.W. Gardner, R. Pitt, S. John, J. Mitchell, D.W. Morgan: Classification of bacteria responsible for ent and eye infections using the cyranose system, IEEE Sens. J. 2(3), 247–252 (2002)CrossRefGoogle Scholar
  600. [600]
    P. Lykos, P.H. Patel, C. Morong, A. Joseph: Rapid detection of bacteria from blood culture by an electronic nose, J. Microbiol. 39(3), 213–218 (2001)Google Scholar
  601. [601]
    S. Dragonieri, R. Schot, B.J.A. Mertens, S. Le Cessie, S.A. Gauw, A. Spanevello, O. Resta, N.P. Willard, T.J. Vink, K.F. Rabe, E.H. Bel, P.J. Sterk: An electronic nose in the discrimination of patients with asthma and controls, J. Allergy Clin. Immunol. 120(4), 856–862 (2007)CrossRefGoogle Scholar
  602. [602]
    A. Aronzon, C.W. Hanson, E.R. Thaler: Differentiation between cerebrospinal fluid and serum with electronic nose, Otolaryngol. Head Neck Surg. 133(1), 16–19 (2005)CrossRefGoogle Scholar
  603. [603]
    M.E. Shykhon, D.W. Morgan, R. Dutta, E.L. Hines, J.W. Gardner: Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: A preliminary study, J. Laryngol. Otol. 118(9), 706–709 (2004)CrossRefGoogle Scholar
  604. [604]
    W.L. Brown, C.T. Hess: Measurement of the biotransfer and time constant of radon from ingested water by human breath analysis, Health Phys. 62(2), 162–170 (1992)CrossRefGoogle Scholar
  605. [605]
    J. Hwang, C. Shin, H. Yoe: Study on an agricultural environment monitoring server system using wireless sensor networks, Sensors 10(12), 11189–11211 (2010)CrossRefGoogle Scholar
  606. [606]
    L. Ruiz-Garcia, L. Lunadei, P. Barreiro, J.I. Robla: A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends, Sensors (Switzerland) 9(6), 4728–4750 (2009)CrossRefGoogle Scholar
  607. [607]
    J. Burrell, T. Brooke, R. Beckwith: Vineyard computing: Sensor networks in agricultural production, IEEE Pervasive Comput. 3(1), 38–45 (2004)CrossRefGoogle Scholar
  608. [608]
    K. Chang, Y.H. Kim, Y.J. Kim, Y.J. Yoon: Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing, Electron. Lett. 43(5), 259–260 (2007)CrossRefGoogle Scholar
  609. [609]
    N. Cho, S.J. Song, S. Kim, H.J. Yoo: A uw uhf rfid tag chip integrated with sensors for wireless environmental monitoring, Proc. ESSCIRC 31st Eur. Solid-State Circuits Conf. (2005) pp. 279–282Google Scholar
  610. [610]
    J.A. Lopez, F. Soto, P. Sanchez, A. Iborra, J. Suardiaz, J.A. Vera: Development of a sensor node for precision horticulture, Sensors 9(5), 3240–3255 (2009)CrossRefGoogle Scholar
  611. [611]
    M. Baietto, A.D. Wilson, D. Bassi, F. Ferrini: Evaluation of three electronic noses for detecting incipient wood decay, Sensors 10(2), 1062–1092 (2010)CrossRefGoogle Scholar
  612. [612]
    A.D. Wilson, D.G. Lester, C.S. Oberle: Application of conductive polymer analysis for wood and woody plant identifications, Forest Ecol. Manag. 209(3), 207–224 (2005)CrossRefGoogle Scholar
  613. [613]
    S.E. Abd El-Aziz: Control strategies of stored product pests, J. Entomol. 8(2), 101–122 (2011)CrossRefGoogle Scholar
  614. [614]
    F. Fleurat-Lessard: Monitoring insect pest populations in grain storage: The european context, Stewart Postharvest Rev. 7(3), 1–8 (2011)CrossRefGoogle Scholar
  615. [615]
    Y. b. Lan, X. Z. Zheng, J. K. Westbrook, J. Lopez, R. Lacey, W. C. Hoffmann: Identification of stink bugs using an electronic nose, J. Bionic Eng. 5, 172–180 (2008) Google Scholar
  616. [616]
    B. Zhou, J. Wang: Use of electronic nose technology for identifying rice infestation by nilaparvata lugens, Sens. Actuators B Chem. 160(1), 15–21 (2011)CrossRefGoogle Scholar
  617. [617]
    B. Zhou, J. Wang: Detection of insect infestations in paddy field using an electronic nose, Int. J. Agricult. Biol. 13(5), 707–712 (2011)Google Scholar
  618. [618]
    L. Pang, J. Wang, X. Lu, H. Yu: Discrimination of storage age for wheat by e-nose, Trans. ASABE 51(5), 1707–1712 (2008)CrossRefGoogle Scholar
  619. [619]
    C. Li, N.E. Schmidt, R. Gitaitis: Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS, LWT Food Sci. Technol. 44(4), 1019–1025 (2011)CrossRefGoogle Scholar
  620. [620]
    S. Neethirajan, D.S. Jayas: Sensors for grain storage, Proc. ASAE Annu Meet., Vol. 12 (2007) p. 076179Google Scholar
  621. [621]
    E. Abad, F. Palacio, M. Nuin: A. G. d. Zarate, A. Juarros, J. M. Gomez, S. Marco: Rfid smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain, J. Food Eng. 93(4), 394–399 (2009)CrossRefGoogle Scholar
  622. [622]
    C. Amador, J.P. Emond, M.C.N. Nunes: Application of RFID technologies in the temperature mapping of the pineapple supply chain, Sens. Instrum. Food Qual. Saf. 3(1), 26–33 (2009)CrossRefGoogle Scholar
  623. [623]
    L. Ruiz-Garcia, P. Barreiro, J.I. Robla: Performance of zigbee-based wireless sensor nodes for real-time monitoring of fruit logistics, J. Food Eng. 87(3), 405–415 (2008)CrossRefGoogle Scholar
  624. [624]
    R. Jedermann, L. Ruiz-Garcia, W. Lang: Spatial temperature profiling by semi-passive rfid loggers for perishable food transportation, Comput. Electron. Agricult. 65(2), 145–154 (2009)CrossRefGoogle Scholar
  625. [625]
    P. Komaraiah, M. Navratil, M. Carlsson, P. Jeffers, M. Brodelius, P.E. Brodelius, P.M. Kieran, C.F. Mandenius: Growth behavior in plant cell cultures based on emissions detected by a multisensor array, Biotechnol. Progress 20(4), 1245–1250 (2004)CrossRefGoogle Scholar
  626. [626]
    A. Campagnoli, L. Pinotti, G. Tognon, F. Cheli, A. Baldi, V. Dell’Orto: Potential application of electronic nose in processed animal proteins (pap) detection in feeding stuffs, Biotechnol. Agron. Soc. Environ. 8(4), 253–255 (2004)Google Scholar
  627. [627]
    A. Branca, P. Simonian, M. Ferrante, E. Novas, R.M. Negri: Electronic nose based discrimination of a perfumery compound in a fragrance, Sens. Actuators B Chem. 92(1/2), 222–227 (2003)CrossRefGoogle Scholar
  628. [628]
    S. Hanaki, T. Nakamoto, T. Moriizumi: Artificial odor-recognition system using neural network for estimating sensory quantities of blended fragrance, Sens. Actuators A Phys. 57(1), 65–71 (1996)CrossRefGoogle Scholar
  629. [629]
    K. Naraghi, N. Sahgal, B. Adriaans, H. Barr, N. Magan: Use of volatile fingerprints for rapid screening of antifungal agents for efficacy against dermatophyte trichophyton species, Sens. Actuators B Chem. 146(2), 521–526 (2010)CrossRefGoogle Scholar
  630. [630]
    A. Rudnitskaya, A. Legin: Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes, J. Ind. Microbiol. Biotechnol. 35(5), 443–451 (2008)CrossRefGoogle Scholar
  631. [631]
    C. Cimander, C.F. Mandenius: Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling, J. Chem. Technol. Biotechnol. 77(10), 1157–1168 (2002)CrossRefGoogle Scholar
  632. [632]
    C. Soderstrom, H. Boren, F. Winquist, C. Krantz-Rulcker: Use of an electronic tongue to analyze mold growth in liquid media, Int. J. Food Microbiol. 83(3), 253–261 (2003)CrossRefGoogle Scholar
  633. [633]
    T.D. Gibson, O. Prosser, J.N. Hulbert, R.W. Marshall, P. Corcoran, P. Lowery, E.A. Ruck-Keene, S. Heron: Detection and simultaneous identification of microorganisms from headspace samples using an electronic nose, Sens. Actuators B Chem. 44(1–3), 413–422 (1997)CrossRefGoogle Scholar
  634. [634]
    J.W. Gardner, M. Craven, C. Dow, E.L. Hines: The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network, Meas. Sci. Technol. 9(1), 120–127 (1998)CrossRefGoogle Scholar
  635. [635]
    J.W. Gardner, J. Yinon: Electronic Noses and Sensors for the Detection of Explosives (Springer, Dordrecht 2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Brian Guthrie
    • 1
  1. 1.Global Food ReserachCargill Inc.WayzataUSA

Personalised recommendations