Odorant Detection by On-line Chemical Ionization Mass Spectrometry

Part of the Springer Handbooks book series (SPRINGERHAND)


The nasal olfactory receptors allow us, as human beings, to detect and perceive odors almost instantaneously upon exposure and over a broad range of concentrations down to ultratrace levels. Translating this rapid and sensitive detection of odorant molecules to the analytical laboratory is a challenging, nontrivial endeavor that remains unachieved to date. On-line mass spectrometry based on chemical ionization (CIMS) comprises sophisticated analytical techniques that meet several of the key requirements in odorant detection, namely fast response times and direct analyses, trace level limits of detection, and a high sensitivity to a suite of odors or, more specifically, odorants. This chapter discusses on-line CIMS and its application in odorant detection in selected fields. The prominent CIMS techniques of selected ion flow tube mass spectrometry (SIFT -MS ), proton transfer reaction MS (PTR -MS ) and atmospheric pressure chemical ionization MS (APCI-MS) are considered, commencing with a brief introduction to their historical developments and a discussion of their operational features and suitability for odorant detection, followed by a review of their widespread applications in odorant measurements in diverse fields of study.


analysis of variance


atmospheric pressure chemical ionization


atmospheric pressure ionization mass spectrometry


Connecticut Chemosensory Clinical Research Center test


chemical ionization


chemical warfare agent


exhaled breath condensate




electron ionization


flow drift tube


food freshness indicator


flame ionization detection


functional magnetic resonance imaging


Fourier transform infrared


full-width at half maximum


gas chromatography-olfactometry


gas chromatography


ion attachment mass spectrometry


ion-molecule reaction


ion mobility spectrometry


ion trap mass spectrometry


liquid chromatography


limit of detection


limit of quantitation




modified atmosphere packaging


multicapillary column


mass spectrometry

m ∕ z

mass-to-charge ratio


odor activity value


odor binding protein


proton affinity


principal components analysis


protected designation of origin


polyether ether ketone


photoionization detector


parts per billion by volume


parts per million by volume


parts per trillion by volume




proton transfer reaction


secondary electrospray ionization


selected ion detection


selected ion flow drift tube


selected ion flow tube


selected ion monitoring


secondary organic aerosol


solid phase micro extraction


trace atmospheric gas analyzer


temporal dominance of sensation


thermal desorption


toxic industrial compound




University of Pennsylvania smell identification test




volume mixing ratio


volatile organic compound


volatile sulfur compound



The authors would like to thank the following people for supplying material on the main techniques discussed within this chapter, namely Murray McEwan and Vaughan Langford of Syft Technologies Ltd., Christchurch, New Zealand (SIFT-MS), Jens Herbig and Lukas Märk of IONICON Analytik GmbH, Innsbruck, Austria (PTR-MS), Jean-Luc Le Quéré at INRA, Dijon, France, Andy Taylor of Mars Petcare, Waltham on the Wolds, Leicestershire, UK, Robert Linforth at University of Nottingham, Nottingham, UK and Ed Sprake at Waters Corporation, Wilmslow, UK (APCI-MS).


  1. [1]
    M.S.B. Munson, F.H. Field: Chemical ionization mass spectrometry. I. General introduction, J. Am. Chem. Soc. 88, 2621–2630 (1966)CrossRefGoogle Scholar
  2. [2]
    F.H. Field: The early days of chemical ionization: A Reminiscence, J. Am. Soc. Mass Spectr. 1, 277–283 (1990)CrossRefGoogle Scholar
  3. [3]
    B. Munson: Development of chemical ionization mass spectrometry, Int. J. Mass Spectrom. 200, 243–251 (2000)CrossRefGoogle Scholar
  4. [4]
    F.C. Fehsenfeld, A.L. Schmeltekopf, P.D. Goldan, H.I. Schiff, E.E. Ferguson: Thermal energy ion-neutral reaction rates. I. Some reactions of helium ions, J. Chem. Phys. 44, 4087–4094 (1966)CrossRefGoogle Scholar
  5. [5]
    E.E. Ferguson, F.C. Fehsenfeld, A.L. Schmeltekopf: Flowing afterglow measurements of ion-neutral reactions. In: Advances in Atomic and Molecular Physics, ed. by D.R. Bates, I. Estermann (Academic, New York 1969)Google Scholar
  6. [6]
    E.E. Ferguson: A personal history of the early development of the flowing afterglow technique for ion-molecule reaction studies, J. Am. Soc. Mass Spectr. 3, 479–486 (1992)CrossRefGoogle Scholar
  7. [7]
    M. McFarland, D.L. Albritton, F.C. Fehsenfeld, E.E. Ferguson, A.L. Schmeltekopf: Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. I. Apparatus and mobility measurements, J. Chem. Phys. 59, 6610–6619 (1973)CrossRefGoogle Scholar
  8. [8]
    N.G. Adams, D. Smith: The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions, Int. J. Mass Spectrom. Ion Phys. 21, 349–359 (1976)CrossRefGoogle Scholar
  9. [9]
    D. Smith, P. Španěl: Ions in the terrestrial atmosphere and in interstellar clouds, Mass Spectrom. Rev. 14, 255–278 (1995)CrossRefGoogle Scholar
  10. [10]
    F. Howorka, F.C. Feshsenfeld, D.L. Albritton: H\({}^{+}\) and D\({}^{+}\) ions in He: observations of a runaway mobility, J. Phys. B-At. Mol. Phys. 12, 4189 (1979)CrossRefGoogle Scholar
  11. [11]
    D. Smith, P. Španěl: The novel selected-ion flow tube approach to trace gas analysis of air and breath, Rapid Commun. Mass Spectrom. 10, 1183–1198 (1996)CrossRefGoogle Scholar
  12. [12]
    A. Lagg, J. Taucher, A. Hansel, W. Lindinger: Applications of proton transfer reactions to gas analysis, Int. J. Mass Spectrom. Ion Proc. 134, 55–66 (1994)CrossRefGoogle Scholar
  13. [13]
    A. Hansel, A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, W. Lindinger: Proton-transfer-reaction mass-spectrometry – Online trace gas-analysis at the ppb level, Int. J. Mass Spectrom. Ion Proc. 149/150, 609–619 (1995)CrossRefGoogle Scholar
  14. [14]
    W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27, 347–354 (1998)CrossRefGoogle Scholar
  15. [15]
    W. Lindinger, A. Hansel, A. Jordan: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): Medical applications, food control and environmental research, Int. J. Mass Spectrom. Ion Proc. 173, 191–241 (1998)CrossRefGoogle Scholar
  16. [16]
    D.I. Carroll, I. Dzidic, R.N. Stillwell, M.G. Horning, E.C. Horning: Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry, Anal. Chem. 46, 706–710 (1974)CrossRefGoogle Scholar
  17. [17]
    E.C. Horning, M.G. Horning, D.I. Carroll, I. Dzidic, R.N. Stillwell: New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure, Anal. Chem. 45, 936–943 (1973)CrossRefGoogle Scholar
  18. [18]
    A.G. Harrison: Chemical Ionization Mass Spectrometry (CRC Press, Boca Raton 1992)Google Scholar
  19. [19]
    E.C. Horning, D.I. Carroll, I. Dzidic, K.D. Haegele, M.G. Horning, R.N. Stillwell: Liquid chromatograph-mass spectrometer-computer analytical systems: A continuous-flow system based on atmospheric pressure ionization mass spectrometry, J. Chromatogr. A 99, 13–21 (1974)CrossRefGoogle Scholar
  20. [20]
    J.B. French, B.A. Thomson, W.R. Davidson, N.M. Reid, J.A. Buckley: Atmospheric pressure chemical ionization mass spectrometry. In: Mass Spectrometry in Environmental Sciences, ed. by O. Hutzinger, F.W. Karasek, S. Safe (Plenum, New York 1985)Google Scholar
  21. [21]
    A.P. Bruins: Mass spectrometry with ion sources operating at atmospheric pressure, Mass Spectrom. Rev. 10, 53–77 (1991)CrossRefGoogle Scholar
  22. [22]
    D.I. Carroll, I. Dzidic, E.C. Horning, R.N. Stillwell: Atmospheric pressure ionization mass spectrometry, Appl. Spectrosc. Rev. 17, 337–406 (1981)CrossRefGoogle Scholar
  23. [23]
    T.R. Covey, B.A. Thomson, B.B. Schneider: Atmospheric pressure ion sources, Mass Spectrom. Rev. 28, 870–897 (2009)CrossRefGoogle Scholar
  24. [24]
    A.J. Taylor, R.S.T. Linforth: On-line monitoring of flavour processes. In: Food Flavour Technology, ed. by A.J. Taylor, R.S.T. Linforth (Wiley-Blackwell, Chichester 2010)CrossRefGoogle Scholar
  25. [25]
    A. Lovett, N. Reid, J. Buckley, J. French, D. Cameron: Real-time analysis of breath using an atmospheric pressure ionization mass spectrometer, Biomed. Mass Spectrom. 6, 91–97 (1979)CrossRefGoogle Scholar
  26. [26]
    F.M. Benoit, W.R. Davidson, A.M. Lovett, S. Nacson, A. Ngo: Breath analysis by atmospheric pressure ionization mass spectrometry, Anal. Chem. 55, 805–807 (1983)CrossRefGoogle Scholar
  27. [27]
    W.J. Soeting, J. Heidema: A mass spectrometric method for measuring flavour concentration/time profiles in human breath, Chem. Senses 13, 607–617 (1988)CrossRefGoogle Scholar
  28. [28]
    M.B. Springett, V. Rozier, J. Bakker: Use of fiber interface direct mass spectrometry for the determination of volatile flavor release from model food systems, J. Agric. Food Chem. 47, 1125–1131 (1999)CrossRefGoogle Scholar
  29. [29]
    R.S.T. Linforth, A.J. Taylor: Apparatus and methods for the analysis of trace constituents in gases, European Patent, EP 0819 937 A2 (1998)Google Scholar
  30. [30]
    A.J. Taylor, R.S.T. Linforth, B.A. Harvey, A. Blake: Atmospheric pressure chemical ionisation mass spectrometry for in vivo analysis of volatile flavour release, Food Chem. 71, 327–338 (2000)CrossRefGoogle Scholar
  31. [31]
    J.-L. Le Quéré, I. Gierczynski, E. Sémon: An atmospheric pressure chemical ionization–ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: A tool for linking aroma release to aroma perception, J. Mass Spectrom. 49, 918–928 (2014)CrossRefGoogle Scholar
  32. [32]
    IUPAC: Recommendations for nomenclature and symbolism for mass spectrometry, Pure Appl. Chem. 63, 1541–1566 (1991) Google Scholar
  33. [33]
    J. Gross: Mass Spectrometry (Springer-Verlag, Berling, Heidelberg 2011)CrossRefGoogle Scholar
  34. [34]
    K.K. Murray, R.K. Boyd, M.N. Eberlin, G.J. Langley, L. Li, Y. Naito: Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013), Pure Appl. Chem. 85, 1515–1609 (2013)CrossRefGoogle Scholar
  35. [35]
    J. de Gouw, C. Warneke: Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev. 26, 223–257 (2007)CrossRefGoogle Scholar
  36. [36]
    E.P. Hunter, S.G. Lias: Evaluated gas phase basicities and proton affinities of molecules: An update, J. Phys. Chem. Ref. Data 27, 413–656 (1998)CrossRefGoogle Scholar
  37. [37]
    K.C. Hunter, A.L.L. East: Properties of C-C bonds in n-alkanes: Relevance to cracking mechanisms, J. Phys. Chem. A 106, 1346–1356 (2002)CrossRefGoogle Scholar
  38. [38]
    D. Smith, P. Španěl: Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis, Mass Spectrom. Rev. 24, 661–700 (2005)CrossRefGoogle Scholar
  39. [39]
    J. Beauchamp, J. Herbig, J. Dunkl, W. Singer, A. Hansel: On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices, Meas. Sci. Technol. 24, 125003 (2013)CrossRefGoogle Scholar
  40. [40]
    C. Ammann, A. Brunner, C. Spirig, A. Neftel: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys. 6, 4643–4651 (2006)CrossRefGoogle Scholar
  41. [41]
    E.S.E. van Beelen, T.A. Koblenz, S. Ingemann, S. Hammerum: Experimental and theoretical evaluation of proton affinities of furan, the methylphenols, and the related anisoles, J. Phys. Chem. A 108, 2787–2793 (2004)CrossRefGoogle Scholar
  42. [42]
    R.S. Blake, M. Patel, P.S. Monks, A.M. Ellis, S. Inomata, H. Tanimoto: Aldehyde and ketone discrimination and quantification using two-stage proton transfer reaction mass spectrometry, Int. J. Mass Spectrom. 278, 15–19 (2008)CrossRefGoogle Scholar
  43. [43]
    A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Märk, R. Schottkowsky, H. Seehauser, P. Sulzer, T.D. Märk: An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR\(+\)SRI-MS), Int. J. Mass Spectrom. 286, 32–38 (2009)CrossRefGoogle Scholar
  44. [44]
    D. Smith, P. Španěl, J. Herbig, J. Beauchamp: Mass spectrometry for real-time quantitative breath analysis, J. Breath Res. 8, 027101 (2014)CrossRefGoogle Scholar
  45. [45]
    A. Edtbauer, E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jürschik, M. Lanza, K. Breiev, L. Märk, P. Sulzer: Theory and practical examples of the quantification of CH\({}_{4}\), CO, O\({}_{2}\), and CO\({}_{2}\) with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS), Int. J. Mass Spectrom. 365/366, 10–14 (2014)CrossRefGoogle Scholar
  46. [46]
    R.V. Hodges, J.L. Beauchamp: Application of alkali ions in chemical ionization mass spectrometry, Anal. Chem. 48, 825–829 (1976)CrossRefGoogle Scholar
  47. [47]
    A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, L. Märk, H. Seehauser, R. Schottkowsky, P. Sulzer, T.D. Märk: A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), Int. J. Mass Spectrom. 286, 122–128 (2009)CrossRefGoogle Scholar
  48. [48]
    L. Cappellin, F. Biasioli, E. Schuhfried, C. Soukoulis, T.D. Märk, F. Gasperi: Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction, Rapid Commun. Mass Spectrom. 25, 179–183 (2011)CrossRefGoogle Scholar
  49. [49]
    J. Herbig, M. Muller, S. Schallhart, T. Titzmann, M. Graus, A. Hansel: On-line breath analysis with PTR-TOF, J. Breath Res. 3, 027004 (2009)CrossRefGoogle Scholar
  50. [50]
    E. Zardin, O. Tyapkova, A. Buettner, J. Beauchamp: Performance assessment of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) for analysis of isobaric compounds in food-flavour applications, LWT-Food Sci. Technol. 56, 153–160 (2014)CrossRefGoogle Scholar
  51. [51]
    R.G. Cooks, R.E. Kaiser: Quadrupole ion trap mass spectrometry, Accounts Chem. Res. 23, 213–219 (1990)CrossRefGoogle Scholar
  52. [52]
    R.E. March: An introduction to quadrupole ion trap mass spectrometry, J. Mass Spectrom. 32, 351–369 (1997)CrossRefGoogle Scholar
  53. [53]
    J.F.J. Todd: Ion trap mass spectrometer—past, present, and future (?), Mass Spectrom. Rev. 10, 3–52 (1991)CrossRefGoogle Scholar
  54. [54]
    J.F.J. Todd, A.D. Penman: The recent evolution of the quadrupole ion trap mass spectrometer – An overview, Int. J. Mass Spectrom. Ion Proc. 106, 1–20 (1991)CrossRefGoogle Scholar
  55. [55]
    L.H. Mielke, D.E. Erickson, S.A. McLuckey, M. Müller, A. Wisthaler, A. Hansel, P.B. Shepson: Development of a proton-transfer-reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds, Anal. Chem. 80, 8171–8177 (2008)CrossRefGoogle Scholar
  56. [56]
    P. Prazeller, P.T. Palmer, E. Boscaini, T. Jobson, M. Alexander: Proton transfer reaction ion trap mass spectrometer, Rapid Commun. Mass Spectrom. 17, 1593–1599 (2003)CrossRefGoogle Scholar
  57. [57]
    C. Warneke, J.A. de Gouw, E.R. Lovejoy, P.C. Murphy, W.C. Kuster, R. Fall: Development of proton-transfer ion trap-mass spectrometry: On-line detection and identification of volatile organic compounds in air, J. Am. Soc. Mass Spectr. 16, 1316–1324 (2005)CrossRefGoogle Scholar
  58. [58]
    F. Biasioli, C. Yeretzian, T.D. Märk, J. Dewulf, H. Van Langenhove: Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis, TrAC Trend. Anal. Chem. 30, 1003–1017 (2011)CrossRefGoogle Scholar
  59. [59]
    S. Inomata, H. Tanimoto, N. Aoki, J. Hirokawa, Y. Sadanaga: A novel discharge source of hydronium ions for proton transfer reaction ionization: Design, characterization, and performance, Rapid Commun. Mass Spectrom. 20, 1025–1029 (2006)CrossRefGoogle Scholar
  60. [60]
    K.P. Wyche, R.S. Blake, K.A. Willis, P.S. Monks, A.M. Ellis: Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry, Rapid Commun. Mass Spectrom. 19, 3356–3362 (2005)CrossRefGoogle Scholar
  61. [61]
    P. Sulzer, A. Edtbauer, E. Hartungen, S. Jurschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Mark, T.D. Mark: From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis, Int. J. Mass Spectrom. 321, 66–70 (2012)CrossRefGoogle Scholar
  62. [62]
    R.S. Blake, C. Whyte, C.O. Hughes, A.M. Ellis, P.S. Monks: Demonstration of proton-transfer-reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds, Anal. Chem. 76, 3841–3845 (2004)CrossRefGoogle Scholar
  63. [63]
    M.M.L. Steeghs, E. Crespo, F.J.M. Harren: Collision induced dissociation study of 10 monoterpenes for identification in trace gas measurements using the newly developed proton-transfer reaction ion trap mass spectrometer, Int. J. Mass Spectrom. 263, 204–212 (2007)CrossRefGoogle Scholar
  64. [64]
    M.M.L. Steeghs, C. Sikkens, E. Crespo, S.M. Cristescu, F.J.M. Harren: Development of a proton-transfer reaction ion trap mass spectrometer: Online detection and analysis of volatile organic compounds, Int. J. Mass Spectrom. 262, 16–24 (2007)CrossRefGoogle Scholar
  65. [65]
    A. Wisthaler, G. Tamas, D.P. Wyon, P. Strom-Tejsen, D. Space, J. Beauchamp, A. Hansel, T.D. Mark, C.J. Weschler: Products of ozone-initiated chemistry in a simulated aircraft environment, Environ. Sci. Technol. 39, 4823–4832 (2005)CrossRefGoogle Scholar
  66. [66]
    L. Keck, C. Hoeschen, U. Oeh: Effects of carbon dioxide in breath gas on proton transfer reaction-mass spectrometry (PTR-MS) measurements, Int. J. Mass Spectrom. 270, 156–165 (2008)CrossRefGoogle Scholar
  67. [67]
    S.C. Herndon, T. Rogers, E.J. Dunlea, J.T. Jayne, R. Miake-Lye, B. Knighton: Hydrocarbon emissions from in-use commercial aircraft during airport operations, Environ. Sci. Technol. 40, 4406–4413 (2006)CrossRefGoogle Scholar
  68. [68]
    C. Warneke, C. van der Veen, S. Luxembourg, J.A. de Gouw, A. Kok: Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: Calibration, humidity dependence, and field intercomparison, Int. J. Mass Spectrom. 207, 167–182 (2001)CrossRefGoogle Scholar
  69. [69]
    R.S. Blake, P.S. Monks, A.M. Ellis: Proton-transfer-reaction mass spectrometry, Chem. Rev. 109, 861–896 (2009)CrossRefGoogle Scholar
  70. [70]
    A.M. Ellis, C.A. Mayhew: Proton Transfer Reaction Mass Spectrometry: Principles and Applications (Wiley, Chichester 2014)CrossRefGoogle Scholar
  71. [71]
    A.J. Taylor, R.S.T. Linforth: Direct mass spectrometry of complex volatile and non-volatile flavour mixtures, Int. J. Mass Spectrom. 223/224, 179–191 (2003)CrossRefGoogle Scholar
  72. [72]
    J. Sunner, G. Nicol, P. Kebarle: Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry, Anal. Chem. 60, 1300–1307 (1988)CrossRefGoogle Scholar
  73. [73]
    L. Jublot, R.S.T. Linforth, A.J. Taylor: Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds, Int. J. Mass Spectrom. 243, 269–277 (2005)CrossRefGoogle Scholar
  74. [74]
    G. Zehentbauer, T. Krick, G.A. Reineccius: Use of humidified air in optimizing APCI-MS response in breath analysis, J. Agric. Food Chem. 48, 5389–5395 (2000)CrossRefGoogle Scholar
  75. [75]
    U. Tegtmeyer, H.P. Weiss, R. Schlögl: Gas analysis by IMR-MS: a comparison to conventional mass spectrometry, Fresenius J. Anal. Chem. 347, 263–268 (1993)CrossRefGoogle Scholar
  76. [76]
    F. Defoort, S. Thiery, S. Ravel: A promising new on-line method of tar quantification by mass spectrometry during steam gasification of biomass, Biomass Bioenerg. 65, 64–71 (2014)CrossRefGoogle Scholar
  77. [77]
    G.A. Eiceman, Z. Karpas: Ion mobility spectrometry (Taylor Francis, Boca Raton 2005)CrossRefGoogle Scholar
  78. [78]
    S. Bell, R. Ewing, G. Eiceman, Z. Karpas: Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes, J. Am. Soc. Mass Spectr. 5, 177–185 (1994)CrossRefGoogle Scholar
  79. [79]
    J.I. Baumbach: Process analysis using ion mobility spectrometry, Anal. Bioanal. Chem. 384, 1059–1070 (2006)CrossRefGoogle Scholar
  80. [80]
    D. Collins, M. Lee: Developments in ion mobility spectrometry – Mass spectrometry, Anal. Bioanal. Chem. 372, 66–73 (2002)CrossRefGoogle Scholar
  81. [81]
    T. Fujii, M. Ogura, H. Jimba: Chemical ionization mass spectrometry with lithium ion attachment to the molecule, Anal. Chem. 61, 1026–1029 (1989)CrossRefGoogle Scholar
  82. [82]
    T. Fujii, S. Arulmozhiraja: Application of In\({}^{+}\) ions in ion attachment mass spectrometry, Int. J. Mass Spectrom. 198, 15–21 (2000)CrossRefGoogle Scholar
  83. [83]
    T. Fujii, P.C. Selvin, M. Sablier, K. Iwase: Lithium ion attachment mass spectrometry for on-line analysis of trace components in air: Direct introduction, Int. J. Mass Spectrom. 209, 39–45 (2001)CrossRefGoogle Scholar
  84. [84]
    P. Španěl, D. Smith: Progress in SIFT-MS: Breath analysis and other applications, Mass Spectrom. Rev. 30, 236–267 (2011)CrossRefGoogle Scholar
  85. [85]
    J. Kubišta, P. Španěl, K. Dryahina, C. Workman, D. Smith: Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification, Rapid Commun. Mass Spectrom. 20, 563–567 (2006)CrossRefGoogle Scholar
  86. [86]
    C. Warneke, J.A. de Gouw, W.C. Kuster, P.D. Goldan, R. Fall: Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method, Environ. Sci. Technol. 37, 2494–2501 (2003)CrossRefGoogle Scholar
  87. [87]
    C. Lindinger, P. Pollien, S. Ali, C. Yeretzian, I. Blank, T. Märk: Unambiguous identification of volatile organic compounds by proton-transfer-reaction mass spectrometry coupled with GC/MS, Anal. Chem. 77, 4117–4124 (2005)CrossRefGoogle Scholar
  88. [88]
    J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom. 223/224, 365–382 (2003)CrossRefGoogle Scholar
  89. [89]
    E. Hurtado-Fernández, T. Pacchiarotta, E. Longueira-Suárez, O.A. Mayboroda, A. Fernández-Gutiérrez, A. Carrasco-Pancorbo: Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: Avocado fruit as example, J. Chromatogr. A 1313, 228–244 (2013)CrossRefGoogle Scholar
  90. [90]
    A. Romano, L. Fischer, J. Herbig, H. Campbell-Sills, J. Coulon, P. Lucas, L. Cappellin, F. Biasioli: Wine analysis by fastGC proton-transfer reaction-time-of-flight-mass spectrometry, Int. J. Mass Spectrom. 369, 81–86 (2014)CrossRefGoogle Scholar
  91. [91]
    R. Spitaler, N. Araghipour, T. Mikoviny, A. Wisthaler, J.D. Via, T.D. Märk: PTR-MS in enology: Advances in analytics and data analysis, Int. J. Mass Spectrom. 266, 1–7 (2007)CrossRefGoogle Scholar
  92. [92]
    E. Boscaini, T. Mikoviny, A. Wisthaler: E.v. Hartungen, T.D. Märk: Characterization of wine with PTR-MS, Int. J. Mass Spectrom. 239, 215–219 (2004)CrossRefGoogle Scholar
  93. [93]
    J. Beauchamp, J. Herbig: Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) for aroma compound detection in real-time: Technology, developments, and applications. In: The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration, ed. by B. Guthrie, J. Beauchamp, A. Buettner, B.K. Lavine (American Chemical Society, Washington D.C. 2015)Google Scholar
  94. [94]
    V. Ruzsanyi, L. Fischer, J. Herbig, C. Ager, A. Amann: Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry, J. Chromatogr. A 1316, 112–118 (2013)CrossRefGoogle Scholar
  95. [95]
    P. Sulzer, E. Hartungen, G. Hanel, S. Feil, K. Winkler, P. Mutschlechner, S. Haidacher, R. Schottkowsky, D. Gunsch, H. Seehauser, M. Striednig, S. Jürschik, K. Breiev, M. Lanza, J. Herbig, L. Märk, T.D. Märk, A. Jordan: A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): High speed due to extreme sensitivity, Int. J. Mass Spectrom. 368, 1–5 (2014)CrossRefGoogle Scholar
  96. [96]
    A.-M. Haahr, H. Madsen, J. Smedsgaard, W.L.P. Bredie, L.H. Stahnke, H.H.F. Refsgaard: Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles, Anal. Chem. 75, 655–662 (2003)CrossRefGoogle Scholar
  97. [97]
    C. Baumann, M.A. Cintora, M. Eichler, E. Lifante, M. Cooke, A. Przyborowska, J.M. Halket: A library of atmospheric pressure ionization daughter ion mass spectra based on wideband excitation in an ion trap mass spectrometer, Rapid Commun. Mass Spectrom. 14, 349–356 (2000)CrossRefGoogle Scholar
  98. [98]
    G. Hanel, W. Sailer, A. Jordan: PTR-MS response-time improvements, 2nd Int. Conf. Proton Trans. React. Mass Spectrom. Its Appl. (Innsbruck University Press, Innsbruck 2005) pp. 170–171Google Scholar
  99. [99]
    R.A. Buffo, G. Zehentbauer, G.A. Reineccius: Determination of linear response in the detection of aroma compounds by atmospheric pressure ionization-mass spectrometry (API-MS), J. Agric. Food Chem. 53, 702–707 (2005)CrossRefGoogle Scholar
  100. [100]
    P. Brown, P. Watts, T.D. Märk, C.A. Mayhew: Proton transfer reaction mass spectrometry investigations on the effects of reduced electric field and reagent ion internal energy on product ion branching ratios for a series of saturated alcohols, Int. J. Mass Spectrom. 294, 103–111 (2010)CrossRefGoogle Scholar
  101. [101]
    K. Buhr, S. van Ruth, C. Delahunty: Analysis of volatile flavour compounds by proton transfer reaction-mass spectrometry: Fragmentation patterns and discrimination between isobaric and isomeric compounds, Int. J. Mass Spectrom. 221, 1–7 (2002)CrossRefGoogle Scholar
  102. [102]
    E. Aprea, F. Biasioli, T.D. Märk, F. Gasperi: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom. 262, 114–121 (2007)CrossRefGoogle Scholar
  103. [103]
    G. Amadei, B.M. Ross: The reactions of a series of terpenoids with H\({}_{3}\)O\({}^{+}\), NO\({}^{+}\) and O\({}_{2}^{+}\) studied using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 25, 162–168 (2011)CrossRefGoogle Scholar
  104. [104]
    I. Déléris, A. Saint-Eve, E. Sémon, H. Guillemin, E. Guichard, I. Souchon, J.-L. Le Quéré: Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods, J. Mass Spectrom. 48, 594–607 (2013)CrossRefGoogle Scholar
  105. [105]
    S.J. Avison: Real-time flavor analysis: Optimization of a proton-transfer-mass spectrometer and comparison with an atmospheric pressure chemical ionization mass spectrometer with an MS-Nose interface, J. Agric. Food Chem. 61, 2070–2076 (2013)CrossRefGoogle Scholar
  106. [106]
    M. Flores, A. Olivares, K. Dryahina, P. Španěl: Real time detection of aroma compounds in meat and meat products by SIFT-MS and comparison to conventional techniques (SPME-GC-MS), Curr. Anal. Chem. 9, 622–630 (2013)CrossRefGoogle Scholar
  107. [107]
    A. Olivares, K. Dryahina, J.L. Navarro, D. Smith, P. Španěl, M. Flores: SPME-GC-MS versus selected ion flow tube mass spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing, J. Agric. Food Chem. 59, 1931–1938 (2011)CrossRefGoogle Scholar
  108. [108]
    S. van Ruth, E. Boscaini, D. Mayr, J. Pugh, M. Posthumus: Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers, Int. J. Mass Spectrom. 223/224, 55–65 (2003)CrossRefGoogle Scholar
  109. [109]
    T. Karl, C. Yeretzian, A. Jordan, W. Lindinger: Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom. 223/224, 383–395 (2003)CrossRefGoogle Scholar
  110. [110]
    P. Pollien, A. Jordan, W. Lindinger, C. Yeretzian: Liquid-air partitioning of volatile compounds in coffee: Dynamic measurements using proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom. 228, 69–80 (2003)CrossRefGoogle Scholar
  111. [111]
    O. Tyapkova, S. Bader-Mittermaier, U. Schweiggert-Weisz, S. Wurzinger, J. Beauchamp, A. Buettner: Characterisation of flavour–texture interactions in sugar-free and sugar-containing pectin gels, Food Res. Int. 55, 336–346 (2014)CrossRefGoogle Scholar
  112. [112]
    A. Hansson, P. Giannouli, S. van Ruth: The influence of gel strength on aroma release from pectin gels in a model mouth and in vivo, monitored with proton-transfer-reaction mass spectrometry, J. Agric. Food Chem. 51, 4732–4740 (2003)CrossRefGoogle Scholar
  113. [113]
    A.B. Boland, K. Buhr, P. Giannouli, S.M. van Ruth: Influence of gelatin, starch, pectin and artificial saliva on the release of 11 flavour compounds from model gel systems, Food Chem. 86, 401–411 (2004)CrossRefGoogle Scholar
  114. [114]
    A.B. Boland, C.M. Delahunty, S.M. van Ruth: Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception, Food Chem. 96, 452–460 (2006)CrossRefGoogle Scholar
  115. [115]
    G. Savary, E. Semon, J.M. Meunier, J.L. Doublier, N. Cayot: Impact of destroying the structure of model gels on volatile release, J. Agric. Food Chem. 55, 7099–7106 (2007)CrossRefGoogle Scholar
  116. [116]
    O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions, Food Chem. 140, 124–134 (2013)CrossRefGoogle Scholar
  117. [117]
    O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions, J. Food Sci. 79, E2014–E2022 (2014)CrossRefGoogle Scholar
  118. [118]
    C. Siefarth, O. Tyapkova, J. Beauchamp, U. Schweiggert, A. Buettner, S. Bader: Influence of polyols and bulking agents on flavour release from low-viscosity solutions, Food Chem. 129, 1462–1468 (2011)CrossRefGoogle Scholar
  119. [119]
    C. Siefarth, O. Tyapkova, J. Beauchamp, U. Schweiggert, A. Buettner, S. Bader: Mixture design approach as a tool to study in vitro flavor release and viscosity interactions in sugar-free polyol and bulking agent solutions, Food Res. Int. 44, 3202–3211 (2011)CrossRefGoogle Scholar
  120. [120]
    I. Fisk, M. Boyer, R.T. Linforth: Impact of protein, lipid and carbohydrate on the headspace delivery of volatile compounds from hydrating powders, Eur. Food. Res. Technol. 235, 517–525 (2012)CrossRefGoogle Scholar
  121. [121]
    M.Á. Pozo-Bayón, M. Santos, P.J. Martín-Álvarez, G. Reineccius: Influence of carbonation on aroma release from liquid systems using an artificial throat and a proton transfer reaction–mass spectrometric technique (PTR–MS), Flavour Frag. J. 24, 226–233 (2009)CrossRefGoogle Scholar
  122. [122]
    O. Benjamin, P. Silcock, J.A. Kieser, J.N. Waddell, M.V. Swain, D.W. Everett: Development of a model mouth containing an artificial tongue to measure the release of volatile compounds, Innov. Food Sci. Emerg. 15, 96–103 (2012)CrossRefGoogle Scholar
  123. [123]
    O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Tongue pressure and oral conditions affect volatile release from liquid systems in a model mouth, J. Agric. Food Chem. 60(39), 9918–9927 (2012)CrossRefGoogle Scholar
  124. [124]
    S.M. van Ruth, K. Buhr: Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry, Int. J. Mass Spectrom. 239, 187–192 (2004)CrossRefGoogle Scholar
  125. [125]
    C. Salles, A. Tarrega, P. Mielle, J. Maratray, P. Gorria, J. Liaboeuf, J.J. Liodenot: Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment, J. Food Eng. 82, 189–198 (2007)CrossRefGoogle Scholar
  126. [126]
    S.M. van Ruth, J.P. Roozen: Influence of mastication and saliva on aroma release in a model mouth system, Food Chem. 71, 339–345 (2000)CrossRefGoogle Scholar
  127. [127]
    C. Salles, M.-C. Chagnon, G. Feron, E. Guichard, H. Laboure, M. Morzel, E. Semon, A. Tarrega, C. Yven: In-mouth mechanisms leading to flavor release and perception, Crit. Rev. Food Sci. Nutr. 51, 67–90 (2010)CrossRefGoogle Scholar
  128. [128]
    S.M. van Ruth, L. Dings, K. Buhr, M.A. Posthumus: In vitro and in vivo volatile flavour analysis of red kidney beans by proton transfer reaction-mass spectrometry, Food Res. Int. 37, 785–791 (2004)CrossRefGoogle Scholar
  129. [129]
    S.M. van Ruth, J. Frasnelli, L. Carbonell: Volatile flavour retention in food technology and during consumption: Juice and custard examples, Food Chem. 106, 1385–1392 (2008)CrossRefGoogle Scholar
  130. [130]
    F. Biasioli, F. Gasperi, E. Aprea, L. Colato, E. Boscaini, T.D. Märk: Fingerprinting mass spectrometry by PTR-MS: Heat treatment vs. pressure treatment of red orange juice – A case study, Int. J. Mass Spectrom. 223/224, 343–353 (2003)CrossRefGoogle Scholar
  131. [131]
    F. Biasioli, F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott, T.D. Märk: Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of ’Trentingrana’ cheese, Food Qual. Prefer. 17, 63–75 (2006)CrossRefGoogle Scholar
  132. [132]
    E. Boscaini, S. van Ruth, F. Biasioli, F. Gasperi, T.D. Mark: Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) analysis of the flavor profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino cheeses, J. Agric. Food Chem. 51, 1782–1790 (2003)CrossRefGoogle Scholar
  133. [133]
    F. Gasperi, G. Gallerani, A. Boschetti, F. Biasioli, A. Monetti, E. Boscaini, A. Jordan, W. Lindinger, S. Iannotta: The mozzarella chesse flavour profile: A comparison between judge panel analysis and proton transfer reaction mass spectrometry, J. Sci. Food Agric. 81, 357–363 (2000)CrossRefGoogle Scholar
  134. [134]
    A. Boschetti, F. Biasioli, M. van Opbergen, C. Warneke, A. Jordan, R. Holzinger, P. Prazeller, T. Karl, A. Hansel, W. Lindinger, S. Iannotta: PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit, Postharvest Biol. Tec. 17, 143–151 (1999)CrossRefGoogle Scholar
  135. [135]
    P.M. Granitto, F. Biasioli, E. Aprea, D. Mott, C. Furlanello, T.D. Märk, F. Gasperi: Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques, Sensor Actuat. B-Chemical 121, 379–385 (2007)CrossRefGoogle Scholar
  136. [136]
    E. Zini, F. Biasioli, F. Gasperi, D. Mott, E. Aprea, T.D. Märk, A. Patocchi, C. Gessler, M. Komjanc: QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry, Euphytica 145, 269–279 (2005)CrossRefGoogle Scholar
  137. [137]
    S.P. Heenan, J.-P. Dufour, N. Hamid, W. Harvey, C.M. Delahunty: Characterisation of fresh bread flavour: Relationships between sensory characteristics and volatile composition, Food Chem. 116, 249–257 (2009)CrossRefGoogle Scholar
  138. [138]
    S. Heenan, C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T.D. Märk, F. Gasperi, F. Biasioli: PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition, Food Chem. 131, 477–484 (2012)CrossRefGoogle Scholar
  139. [139]
    C. Lindinger, D. Labbe, P. Pollien, A. Rytz, M.A. Juillerat, C. Yeretzian, I. Blank: When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee, Anal. Chem. 80, 1574–1581 (2008)CrossRefGoogle Scholar
  140. [140]
    S. Yener, A. Romano, L. Cappellin, T.D. Märk, J. Sánchez del Pulgar, F. Gasperi, L. Navarini, F. Biasioli: PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins, J. Mass Spectrom. 49, 929–935 (2014)CrossRefGoogle Scholar
  141. [141]
    C. Yeretzian, A. Jordan, R. Badoud, W. Lindinger: From the green bean to the cup of coffee: Investigating coffee roasting by on-line monitoring of volatiles, Eur. Food. Res. Technol. 214, 92–104 (2002)CrossRefGoogle Scholar
  142. [142]
    C. Yeretzian, A. Jordan, W. Lindinger: Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry, Int. J. Mass Spectrom. 223–224, 115–139 (2003)CrossRefGoogle Scholar
  143. [143]
    S. van Ruth, K. Buhr: Influence of saliva on temporal volatile flavour release from red bell peppers determined by proton transfer reaction-mass spectrometry, Eur. Food. Res. Technol. 216, 220–223 (2003)CrossRefGoogle Scholar
  144. [144]
    B.M. Davis, S.T. Senthilmohan, P.F. Wilson, M.J. McEwan: Major volatile compounds in head-space above olive oil analysed by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 19, 2272–2278 (2005)CrossRefGoogle Scholar
  145. [145]
    D. Smith, T. Wang, P. Španěl: Kinetics and isotope patterns of ethanol and acetaldehyde emissions from yeast fermentations of glucose and glucose-6,6-d2 using selected ion flow tube mass spectrometry: A case study, Rapid Commun. Mass Spectrom. 16, 69–76 (2002)CrossRefGoogle Scholar
  146. [146]
    A. Olivares, K. Dryahina, J.L. Navarro, M. Flores, D. Smith, P. Španěl: Selected ion flow tube-mass spectrometry for absolute quantification of aroma compounds in the headspace of dry fermented sausages, Anal. Chem. 82, 5819–5829 (2010)CrossRefGoogle Scholar
  147. [147]
    B. Noseda, P. Ragaert, D. Pauwels, T. Anthierens, H. Van Langenhove, J. Dewulf, F. Devlieghere: Validation of selective ion flow tube mass spectrometry for fast quantification of volatile bases produced on atlantic cod (Gadus morhua), J. Agric. Food Chem. 58, 5213–5219 (2010)CrossRefGoogle Scholar
  148. [148]
    V.S. Langford, C.J. Reed, D.B. Milligan, M.J. McEwan, S.A. Barringer, W.J. Harper: Headspace analysis of Italian and New Zealand Parmesan cheeses, J. Food Sci. 77, C719–C726 (2012)CrossRefGoogle Scholar
  149. [149]
    N. Sumonsiri, S.A. Barringer: Application of SIFT-MS in monitoring volatile compounds in fruits and vegetables, Curr. Anal. Chem. 9, 631–641 (2013)CrossRefGoogle Scholar
  150. [150]
    G. Ozcan, S. Barringer: Effect of enzymes on strawberry volatiles during storage, at different ripeness level, in different cultivars, and during eating, J. Food Sci. 76, C324–C333 (2011)CrossRefGoogle Scholar
  151. [151]
    H. Duan, S.A. Barringer: Changes in furan and other volatile compounds in sliced carrot during air-drying, J. Food Process Pres. 36, 46–54 (2012)CrossRefGoogle Scholar
  152. [152]
    P. Ties, S. Barringer: Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh, J. Food Sci. 77, C830–C837 (2012)CrossRefGoogle Scholar
  153. [153]
    Y. Xu, S. Barringer: Effect of temperature on lipid-related volatile production in tomato puree, J. Agric. Food Chem. 57, 9108–9113 (2009)CrossRefGoogle Scholar
  154. [154]
    B. Wampler, S.A. Barringer: Volatile generation in bell peppers during frozen storage and thawing using selected ion flow tube mass spectrometry (SIFT-MS), J. Food Sci. 77, C677–C683 (2012)CrossRefGoogle Scholar
  155. [155]
    C. Azcarate, S.A. Barringer: Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube – Mass spectrometry, J. Food Sci. 75, C710–C721 (2010)CrossRefGoogle Scholar
  156. [156]
    Y. Huang, S.A. Barringer: Alkylpyrazines and other volatiles in cocoa liquors at pH 5 to 8, by selected ion flow tube-mass spectrometry (SIFT-MS), J. Food Sci. 75, C121–C127 (2010)CrossRefGoogle Scholar
  157. [157]
    Y. Huang, S.A. Barringer: Monitoring of cocoa volatiles produced during roasting by selected ion flow tube-mass spectrometry (SIFT-MS), J. Food Sci. 76, C279–C286 (2011)CrossRefGoogle Scholar
  158. [158]
    A.L. Smith, S.A. Barringer: Color and volatile analysis of peanuts roasted using oven and microwave technologies, J. Food Sci. 79, C1895–C1906 (2014)CrossRefGoogle Scholar
  159. [159]
    T. Bowman, S. Barringer: Analysis of factors affecting volatile compound formation in roasted pumpkin seeds with selected ion flow tube-mass spectrometry (sift-ms) and sensory analysis, J. Food Sci. 77, C51–C60 (2012)CrossRefGoogle Scholar
  160. [160]
    A. Agila, S. Barringer: Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis), J. Food Sci. 77, C461–C468 (2012)CrossRefGoogle Scholar
  161. [161]
    A.L. Smith, J.J. Perry, J.A. Marshall, A.E. Yousef, S.A. Barringer: Oven, microwave, and combination roasting of peanuts: Comparison of inactivation of Salmonella surrogate Enterococcus faecium, color, volatiles, flavor, and lipid oxidation, J. Food Sci. 79, S1584–S1594 (2014)CrossRefGoogle Scholar
  162. [162]
    G. Amadei, B.M. Ross: Quantification of character-impacting compounds in Ocimum basilicum and ’Pesto alla Genovese’ with selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 26, 219–225 (2012)CrossRefGoogle Scholar
  163. [163]
    E.N. Friel, M. Wang, A.J. Taylor, E.A. MacRae: In vitro and in vivo release of aroma compounds from yellow-fleshed kiwifruit, J. Agric. Food Chem. 55, 6664–6673 (2007)CrossRefGoogle Scholar
  164. [164]
    Z.A. Shojaei, R.S.T. Linforth, A.J. Taylor: Estimation of the oil water partition coefficient, experimental and theoretical approaches related to volatile behaviour in milk, Food Chem. 103, 689–694 (2007)CrossRefGoogle Scholar
  165. [165]
    J. Wright, F. Wulfert, J. Hort, A.J. Taylor: Effect of preparation conditions on release of selected volatiles in tea headspace, J. Agric. Food Chem. 55, 1445–1453 (2007)CrossRefGoogle Scholar
  166. [166]
    A.I. Carrapiso: Effect of fat content on flavour release from sausages, Food Chem. 103, 396–403 (2007)CrossRefGoogle Scholar
  167. [167]
    M. Aznar, M. Tsachaki, R.S.T. Linforth, V. Ferreira, A.J. Taylor: Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS, Int. J. Mass Spectrom. 239, 17–25 (2004)CrossRefGoogle Scholar
  168. [168]
    M. Tsachaki, R.S.T. Linforth, A.J. Taylor: Dynamic headspace analysis of the release of volatile organic compounds from ethanolic systems by direct APCI-MS, J. Agric. Food Chem. 53, 8328–8333 (2005)CrossRefGoogle Scholar
  169. [169]
    M. Tsachaki, A.-L. Gady, M. Kalopesas, R.S.T. Linforth, V. Athès, M. Marin, A.J. Taylor: Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions, J. Agric. Food Chem. 56, 5308–5315 (2008)CrossRefGoogle Scholar
  170. [170]
    J.S. del Pulgar, C. Soukoulis, F. Biasioli, L. Cappellin, C. García, F. Gasperi, P. Granitto, T.D. Märk, E. Piasentier, E. Schuhfried: Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS), Talanta 85, 386–393 (2011)CrossRefGoogle Scholar
  171. [171]
    A. Agila, S.A. Barringer: Volatile profile of cashews (Anacardium occidentale L.) from different geographical origins during roasting, J. Food Sci. 76, C768–C774 (2011)CrossRefGoogle Scholar
  172. [172]
    A. Agila, S. Barringer: Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations, J. Food Sci. 78, C184–C191 (2013)CrossRefGoogle Scholar
  173. [173]
    A. Agila, S. Barringer: Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys, J. Food Sci. 77, C1103–C1108 (2012)CrossRefGoogle Scholar
  174. [174]
    A.I. Carrapiso, B. Noseda, C. García, R. Reina, J. Sánchez del Pulgar, F. Devlieghere: SIFT-MS analysis of Iberian hams from pigs reared under different conditions, Meat Science 104, 8–13 (2015)CrossRefGoogle Scholar
  175. [175]
    N. Araghipour, J. Colineau, A. Koot, W. Akkermans, J.M.M. Rojas, J. Beauchamp, A. Wisthaler, T.D. Märk, G. Downey, C. Guillou, L. Mannina, S. van Ruth: Geographical origin classification of olive oils by PTR-MS, Food Chem. 108, 374–383 (2008)CrossRefGoogle Scholar
  176. [176]
    S. Yener, A. Romano, L. Cappellin, P.M. Granitto, E. Aprea, L. Navarini, T.D. Märk, F. Gasperi, F. Biasioli: Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS, Food Res. Int. 69, 235–243 (2015)CrossRefGoogle Scholar
  177. [177]
    H.H. Gan, B. Yan, R.S.T. Linforth, I.D. Fisk: Development and validation of an APCI-MS/GC–MS approach for the classification and prediction of Cheddar cheese maturity, Food Chem. 190, 442–447 (2016)CrossRefGoogle Scholar
  178. [178]
    K. Gkatzionis, R.S.T. Linforth, C.E.R. Dodd: Volatile profile of Stilton cheeses: Differences between zones within a cheese and dairies, Food Chem. 113, 506–512 (2009)CrossRefGoogle Scholar
  179. [179]
    H.-H. Gan, C. Soukoulis, I. Fisk: Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification – A case study: Geographical provenance and cultivar classification of monovarietal clarified apple juices, Food Chem. 146, 149–156 (2014)CrossRefGoogle Scholar
  180. [180]
    N. Ashraf, R.S.T. Linforth, F. Bealin-Kelly, K. Smart, A.J. Taylor: Rapid analysis of selected beer volatiles by atmospheric pressure chemical ionisation-mass spectrometry, Int. J. Mass Spectrom. 294, 47–53 (2010)CrossRefGoogle Scholar
  181. [181]
    K. Taylor, C. Wick, H. Castada, K. Kent, W.J. Harper: Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold, J. Food Sci. 78, C1509–C1515 (2013)CrossRefGoogle Scholar
  182. [182]
    R. West, K. Seetharaman, L.M. Duizer: Whole grain macaroni: Flavour interactions with sodium-reduced cheese sauce, Food Res. Int. 53, 149–155 (2013)CrossRefGoogle Scholar
  183. [183]
    V. Langford, J. Gray, B. Foulkes, P. Bray, M.J. McEwan: Application of selected ion flow tube-mass spectrometry to the characterization of monofloral New Zealand honeys, J. Agric. Food Chem. 60, 6806–6815 (2012)CrossRefGoogle Scholar
  184. [184]
    E. Aprea, F. Biasioli, G. Sani, C. Cantini, T.D. Mark, F. Gasperi: Proton transfer reaction-mass spectrometry (PTR-MS) headspace analysis for rapid detection of oxidative alteration of olive oil, J. Agric. Food Chem. 54, 7635–7640 (2006)CrossRefGoogle Scholar
  185. [185]
    W.J. Harper, A.K.-V. Nurdan, W. Cheryl, E. Karen, L. Vaughan: Analysis of volatile sulfur compounds in swiss cheese using selected ion flow tube mass spectrometry (SIFT-MS). In: Volatile Sulfur Compounds in Food, ed. by M.C. Qian, X. Fan, K. Mahattanatawee (American Chemical Society, Washington 2011)Google Scholar
  186. [186]
    D. Mayr, R. Margesin, F. Schinner, T.D. Märk: Detection of the spoiling of meat using PTR-MS, Int. J. Mass Spectrom. 223/224, 229–235 (2003)CrossRefGoogle Scholar
  187. [187]
    D. Mayr, R. Margesin, E. Klingsbichel, E. Hartungen, D. Jenewein, F. Schinner, T.D. Mark: Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry, Appl. Environ. Microbiol. 69, 4697–4705 (2003)CrossRefGoogle Scholar
  188. [188]
    D. Jaksch, R. Margesin, T. Mikoviny, J.D. Skalny, E. Hartungen, F. Schinner, N.J. Mason, T.D. Märk: The effect of ozone treatment on the microbial contamination of pork meat measured by detecting the emissions using PTR-MS and by enumeration of microorganisms, Int. J. Mass Spectrom. 239, 209–214 (2004)CrossRefGoogle Scholar
  189. [189]
    M. Bunge, N. Araghipour, T. Mikoviny, J. Dunkl, R. Schnitzhofer, A. Hansel, F. Schinner, A. Wisthaler, R. Margesin, T.D. Mark: On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry, Appl. Environ. Microbiol. 74, 2179–2186 (2008)CrossRefGoogle Scholar
  190. [190]
    P. Silcock, M. Alothman, E. Zardin, S. Heenan, C. Siefarth, P.J. Bremer, J. Beauchamp: Microbially induced changes in the volatile constituents of fresh chilled pasteurised milk during storage, Food Pack. Shelf Life 2, 81–90 (2014)CrossRefGoogle Scholar
  191. [191]
    J. Beauchamp, E. Zardin, P. Silcock, P.J. Bremer: Monitoring photooxidation-induced dynamic changes in the volatile composition of extended shelf life bovine milk by PTR-MS, J. Mass Spectrom. 49, 952–958 (2014)CrossRefGoogle Scholar
  192. [192]
    C. Soukoulis, E. Aprea, F. Biasioli, L. Cappellin, E. Schuhfried, T.D. Märk, F. Gasperi: Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk, Rapid Commun. Mass Spectrom. 24, 2127–2134 (2010)CrossRefGoogle Scholar
  193. [193]
    A. Olivares, K. Dryahina, P. Španěl, M. Flores: Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS, Food Chem. 135, 1801–1808 (2012)CrossRefGoogle Scholar
  194. [194]
    V. Pothakos, C. Nyambi, B.-Y. Zhang, A. Papastergiadis, B. De Meulenaer, F. Devlieghere: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions, Int. J. Food Micobiol. 178, 120–129 (2014)CrossRefGoogle Scholar
  195. [195]
    B. Noseda, M.T. Islam, M. Eriksson, M. Heyndrickx, K. De Reu, H. Van Langenhove, F. Devlieghere: Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets, Food Microbiol. 30, 408–419 (2012)CrossRefGoogle Scholar
  196. [196]
    B. Noseda, P. Ragaert, J. Dewulf, F. Devlieghere: Fast quantification of total volatile bases and other volatile microbial spoilage metabolites formed in cod fillets using SIFT-MS technology, Commun. Agric. Appl. Biol. Sci. 73, 185–188 (2008)Google Scholar
  197. [197]
    K. Broekaert, B. Noseda, M. Heyndrickx, G. Vlaemynck, F. Devlieghere: Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage, Int. J. Food Micobiol. 166, 487–493 (2013)CrossRefGoogle Scholar
  198. [198]
    B.M. Davis, M.J. McEwan: Determination of olive oil oxidative status by selected ion flow tube mass spectrometry, J. Agric. Food Chem. 55, 3334–3338 (2007)CrossRefGoogle Scholar
  199. [199]
    B. Davis, S. Senthilmohan, M. McEwan: Direct determination of antioxidants in whole olive oil using the SIFT-MS-TOSC assay, J. Am. Oil Chem. Soc. 88, 785–792 (2011)CrossRefGoogle Scholar
  200. [200]
    A. Buettner, J. Beauchamp: Chemical input – sensory output: Diverse modes of physiology-flavour interaction, Food Qual. Prefer. 21, 915–924 (2010)CrossRefGoogle Scholar
  201. [201]
    B. Schilling, T. Granier, G. Frater, A. Hanhart: Organic compounds and compositions having the ability to modulate fragrance compositions, Patent, Vol. PCT/CH2008/000128 (2008)Google Scholar
  202. [202]
    J.M. Davidson, R.S.T. Linforth, T.A. Hollowood, A.J. Taylor: Effect of sucrose on the perceived flavor intensity of chewing gum, J. Agric. Food Chem. 47, 4336–4340 (1999)CrossRefGoogle Scholar
  203. [203]
    J.B. Mei, G.A. Reineccius, W.B. Knighton, E.P. Grimsrud: Influence of strawberry yogurt composition on aroma release, J. Agric. Food Chem. 52, 6267–6270 (2004)CrossRefGoogle Scholar
  204. [204]
    R. Linforth, A.J. Taylor: Persistence of volatile compounds in the breath after their consumption in aqueous solutions, J. Agric. Food Chem. 48, 5419–5423 (2000)CrossRefGoogle Scholar
  205. [205]
    M. Repoux, E. Sémon, G. Feron, E. Guichard, H. Labouré: Inter-individual variability in aroma release during sweet mint consumption, Flavour Frag. J. 27, 40–46 (2012)CrossRefGoogle Scholar
  206. [206]
    V. Normand, S. Avison, A. Parker: Modeling the kinetics of flavour release during drinking, Chem. Senses 29, 235–245 (2004)CrossRefGoogle Scholar
  207. [207]
    S. Rabe, R.S. Linforth, U. Krings, A.J. Taylor, R.G. Berger: Volatile release from liquids: A comparison of in vivo APCI-MS, in-mouth headspace trapping and in vitro mouth model data, Chem. Senses 29, 163–173 (2004)CrossRefGoogle Scholar
  208. [208]
    L. Hewson, T. Hollowood, S. Chandra, J. Hort: Taste – Aroma interactions in a citrus flavoured model beverage system: Similarities and differences between acid and sugar type, Food Qual. Prefer. 19, 323–334 (2008)CrossRefGoogle Scholar
  209. [209]
    R.M.A.J. Ruijschop, M.J.M. Burgering, M.A. Jacobs, A.E.M. Boelrijk: Retro-nasal aroma release depends on both subject and product differences: A link to food intake regulation?, Chem. Senses 34, 395–403 (2009)CrossRefGoogle Scholar
  210. [210]
    R.M.A.J. Ruijschop, A.E.M. Boelrijk, C. de Graaf, M.S. Westerterp-Plantenga: Retronasal aroma release and satiation: A review, J. Agric. Food Chem. 57, 9888–9894 (2009)CrossRefGoogle Scholar
  211. [211]
    M. Mestres, R. Kieffer, A. Buettner: Release and perception of ethyl butanoate during and after consumption of whey protein gels: Relation between textural and physiological parameters, J. Agric. Food Chem. 54, 1814–1821 (2006)CrossRefGoogle Scholar
  212. [212]
    M. Mestres, N. Moran, A. Jordan, A. Buettner: Aroma release and retronasal perception during and after consumption of flavored whey protein gels with different textures. 1. in vivo release analysis, J. Agric. Food Chem. 53, 403–409 (2005)CrossRefGoogle Scholar
  213. [213]
    A. Saint-Eve, I. Déléris, E. Aubin, E. Semon, G. Feron, J.-M. Rabillier, D. Ibarra, E. Guichard, I. Souchon: Influence of composition (CO\({}_{2}\) and sugar) on aroma release and perception of mint-flavored carbonated beverages, J. Agric. Food Chem. 57, 5891–5898 (2009)CrossRefGoogle Scholar
  214. [214]
    A. Saint-Eve, I. Déléris, G. Feron, D. Ibarra, E. Guichard, I. Souchon: How trigeminal, taste and aroma perceptions are affected in mint-flavored carbonated beverages, Food Qual. Prefer. 21, 1026–1033 (2010)CrossRefGoogle Scholar
  215. [215]
    E. Aprea, F. Biasioli, F. Gasperi, T.D. Märk, S. van Ruth: In vivo monitoring of strawberry flavour release from model custards: effect of texture and oral processing, Flavour Frag. J. 21, 53–58 (2006)CrossRefGoogle Scholar
  216. [216]
    D. Mayr, T. Märk, W. Lindinger, H. Brevard, C. Yeretzian: Breath-by-breath analysis of banana aroma by proton transfer reaction mass spectrometry, Int. J. Mass Spectrom. 223/224, 743–756 (2003)CrossRefGoogle Scholar
  217. [217]
    M. Charles, A. Romano, S. Yener, M. Barnabà, L. Navarini, T.D. Märk, F. Biasoli, F. Gasperi: Understanding flavour perception of espresso coffee by the combination of a dynamic sensory method and in-vivo nosespace analysis, Food Res. Int. 69, 9–20 (2015)CrossRefGoogle Scholar
  218. [218]
    D. Frank, I. Appelqvist, U. Piyasiri, T.J. Wooster, C. Delahunty: Proton transfer reaction mass spectrometry and time intensity perceptual measurement of flavor release from lipid emulsions using trained human subjects, J. Agric. Food Chem. 59, 4891–4903 (2011)CrossRefGoogle Scholar
  219. [219]
    Y. Xu, S. Barringer: Comparison of volatile release in tomatillo and different varieties of tomato during chewing, J. Food Sci. 75, C352–C358 (2010)CrossRefGoogle Scholar
  220. [220]
    National Research Council Committee on Odours: Odors from Stationary and Mobile Sources (Office of publications, National Academy of Sciences, Washinghton 1979) Google Scholar
  221. [221]
    D. Shusterman: Critical review: The health significance of environmental odor pollution, Arch. Environ. Health 47, 76–87 (1992)CrossRefGoogle Scholar
  222. [222]
    J.A. Nicell: Assessment and regulation of odour impacts, Atmos. Environ. 43, 196–206 (2009)CrossRefGoogle Scholar
  223. [223]
    C. Van Thriel, E. Kiesswetter, M. Schäper, S.A. Juran, M. Blaszkewicz, S. Kleinbeck: Odor annoyance of environmental chemicals: Sensory and cognitive influences, J. Toxicol. Environ. Health A Curr, Issues 71, 776–785 (2008)Google Scholar
  224. [224]
    H.S. Rosenkranz, A.R. Cunningham: Environmental odors and health hazards, Sci. Total Environ. 313, 15–24 (2003)CrossRefGoogle Scholar
  225. [225]
    P. Dalton: Upper airway irritation, odor perception and health risk due to airborne chemicals, Toxicol. Lett. 140/141, 239–248 (2003)CrossRefGoogle Scholar
  226. [226]
    K. Sucker, R. Both, G. Winneke: Adverse effects of environmental odours: Reviewing studies on annoyance responses and symptom reporting, Water Sci. Technol. 44, 43–51 (2001)Google Scholar
  227. [227]
    R. Both, K. Sucker, G. Winneke, E. Koch: Odour intensity and hedonic tone-important parameters to describe odour annoyance to residents?, Water Sci. Technol. 50, 83–92 (2004)Google Scholar
  228. [228]
    A. Godayol, R.M. Marcé, F. Borrull, E. Anticõ, J.M. Sanchez: Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants, J. Sep. Sci. 36, 1621–1628 (2013)CrossRefGoogle Scholar
  229. [229]
    P. Bruno, M. Caselli, G. de Gennaro, M. Solito, M. Tutino: Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers, Waste Manage. 27, 539–544 (2007)CrossRefGoogle Scholar
  230. [230]
    K.K. Kleeberg, Y. Liu, M. Jans, M. Schlegelmilch, J. Streese, R. Stegmann: Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC–MS/olfactometry, Waste Manage. 25, 872–879 (2005)CrossRefGoogle Scholar
  231. [231]
    J.A. Koziel, J.P. Spinhirne, J.D. Lloyd, D.B. Parker, D.W. Wright, F.W. Kuhrt: Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters, J. Air Waste Manage. Assoc. 55, 1147–1157 (2005)CrossRefGoogle Scholar
  232. [232]
    J. Campbell, M. Tuday, K.J. Chen: Comparison of four methods used to characterize odorous compounds, Symp. Air Qual. Meas. Methods Technol. (2005)Google Scholar
  233. [233]
    J. Beauchamp, J. Herbig, R. Gutmann, A. Hansel: On the use of Tedlar bags for breath-gas sampling and analysis, J. Breath Res. 2, 046001 (2008)CrossRefGoogle Scholar
  234. [234]
    US EPA: Compendium of methods for the determination of toxic organic compounds in ambient air (U.S. Environmental Protection Agency, Cincinnati 1999)Google Scholar
  235. [235]
    A. Ribes, G. Carrera, E. Gallego, X. Roca, M.J. Berenguer, X. Guardino: Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system, J. Chromatogr. A 1140, 44–55 (2007)CrossRefGoogle Scholar
  236. [236]
    P. Boeker, J. Leppert, P. Schulze Lammers: Comparison of odorant losses at the ppb-level from sampling bags of Nalophan and Tedlar and from adsorption tubes. In: Chemical Engineering Transactions, Vol. 40, ed. by R. del Rosso (AIDIC The Italian Association of Chemical Engineering, Milan 2014)Google Scholar
  237. [237]
    J.R. Kastner, K.C. Das: Wet scrubber analysis of volatile organic compound removal in the rendering industry, J. Air Waste Manage. Assoc. 52, 459–469 (2002)CrossRefGoogle Scholar
  238. [238]
    A.C. Romain, J. Nicolas: Monitoring an odour in the environment with an electronic nose: Requirements for the signal processing. In: Biologically Inspired Signal Processing for Chemical Sensing, ed. by A. Gutiérrez, S. Marco (Springer, Berlin, Heidelberg 2009)Google Scholar
  239. [239]
    R.H. Kagann, R.A. Hashmonay, A. Barnack, R. Jones, J. Smith: Measurement of chemical vapors emitted from industrial sources in an urban environment using open-path FTIR, Proc. Air Waste Manag. Assoc. Ann. Conf. Exhib., AWMA, Indianapolis (2004)Google Scholar
  240. [240]
    Y.C. Tsao, C.F. Wu, P.E. Chang, S.Y. Chen, Y.H. Hwang: Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant, Sci. Total Environ. 409, 3158–3165 (2011)CrossRefGoogle Scholar
  241. [241]
    M.H. Chen, C.S. Yuan, L.C. Wang: Source identification of VOCs in a petrochemical complex by applying open-path Fourier transform infrared spectrometry, Aerosol Air Qual. Res. 14, 1630–1638 (2014)Google Scholar
  242. [242]
    P. Wolkoff, C.K. Wilkins, P.A. Clausen, G.D. Nielsen: Organic compounds in office environments – Sensory irritation, odor, measurements and the role of reactive chemistry, Indoor Air 16, 7–19 (2006)CrossRefGoogle Scholar
  243. [243]
    J.E. Cone, D. Shusterman: Health effects of indoor odorants, Environ. Health Perspect. 95, 53–59 (1991)CrossRefGoogle Scholar
  244. [244]
    C.J. Weschler: Changes in indoor pollutants since the 1950s, Atmos. Environ. 43, 153–169 (2009)CrossRefGoogle Scholar
  245. [245]
    P. Wolkoff, P.A. Clausen, B. Jensen, G.D. Nielsen, C.K. Wilkins: Are we measuring the relevant indoor pollutants?, Indoor Air 7, 92–106 (1997)CrossRefGoogle Scholar
  246. [246]
    J.E. Cometto-Muniz, W.S. Cain: Sensory irritation: Relation to indoor air pollution, Ann. NY Acad. Sci. 641, 137–151 (1992)CrossRefGoogle Scholar
  247. [247]
    A.C. Rohr: The health significance of gas- and particle-phase terpene oxidation products: A review, Environ. Int. 60, 145–162 (2013)CrossRefGoogle Scholar
  248. [248]
    L. Morawska, A. Afshari, G.N. Bae, G. Buonanno, C.Y.H. Chao, O. Hänninen, W. Hofmann, C. Isaxon, E.R. Jayaratne, P. Pasanen, T. Salthammer, M. Waring, A. Wierzbicka: Indoor aerosols: From personal exposure to risk assessment, Indoor Air 23, 462–487 (2013)CrossRefGoogle Scholar
  249. [249]
    M.S. Waring: Secondary organic aerosol in residences: Predicting its fraction of fine particle mass and determinants of formation strength, Indoor Air 24, 376–389 (2014)CrossRefGoogle Scholar
  250. [250]
    P. Wolkoff, G.D. Nielsen: Organic compounds in indoor air – Their relevance for perceived indoor air quality?, Atmos. Environ. 35, 4407–4417 (2001)CrossRefGoogle Scholar
  251. [251]
    J.E. Cometto-Muñniz, S. Hernández: Odorous and pungent attributes of mixed and unmixed odorants, Percept. Psychophys. 47, 391–399 (1990)CrossRefGoogle Scholar
  252. [252]
    S. Inomata, H. Tanimoto, S. Kameyama, U. Tsunogai, H. Irie, Y. Kanaya, Z. Wang: Technical Note: Determination of formaldehyde mixing ratios in air with PTR-MS: Laboratory experiments and field measurements, Atmos. Chem. Phys. 8, 273–284 (2008)CrossRefGoogle Scholar
  253. [253]
    A. Wisthaler, E.C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S.J. Solomon, R. Steinbrecher, R. Tillmann, T. Brauers: Technical note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys. 8, 2189–2200 (2008)CrossRefGoogle Scholar
  254. [254]
    P. Wolkoff, P.A. Clausen, C.K. Wilkins, K.S. Hougaard, G.D. Nielsen: Formation of strong airway irritants in a model mixture of \((+)-\alpha\)-pinene/ozone, Atmos. Environ. 33, 693–698 (1999)CrossRefGoogle Scholar
  255. [255]
    W.W. Nazaroff, C.J. Weschler: Cleaning products and air fresheners: Exposure to primary and secondary air pollutants, Atmos. Environ. 38, 2841–2865 (2004)CrossRefGoogle Scholar
  256. [256]
    P. Wolkoff: Indoor air pollutants in office environments: Assessment of comfort, health, and performance, Int. J. Hyg. Environ. Health 216, 371–394 (2013)CrossRefGoogle Scholar
  257. [257]
    A. Lee, A.H. Goldstein, M.D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N.L. Ng, R.C. Flagan, J.H. Seinfeld: Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes, J. Geophys. Res.-Atmos. 111(D7) (2006)Google Scholar
  258. [258]
    Y. Ishizuka, M. Tokumura, A. Mizukoshi, M. Noguchi, Y. Yanagisawa: Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: Effects of coexistent carbonyl compounds, Int. J. Environ. Res. Public Heal. 7, 3853–3870 (2010)CrossRefGoogle Scholar
  259. [259]
    A. van Eijck, T. Opatz, D. Taraborrelli, R. Sander, T. Hoffmann: New tracer compounds for secondary organic aerosol formation from β-caryophyllene oxidation, Atmos. Environ. 80, 122–130 (2013)CrossRefGoogle Scholar
  260. [260]
    N. Schoon, C. Amelynck, L. Vereecken, E. Arijs: A selected ion flow tube study of the reactions of H\({}_{3}\)O\(+\), NO\({}^{+}\) and O\({}_{2}^{+}\) with a series of monoterpenes, Int. J. Mass Spectrom. 229, 231–240 (2003)CrossRefGoogle Scholar
  261. [261]
    F. Mayer, K. Breuer, K. Sedlbauer: Material and indoor odors and odorants. In: Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation, 2nd Edition, ed. by T. Salthammer, E. Uhde (Wiley, Weinheim 2009)Google Scholar
  262. [262]
    Y. Zhang, J. Mo: Real-time monitoring of indoor organic compounds. In: Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation: 2nd Edition, ed. by T. Salthammer, E. Uhde (Wiley, Weinheim 2009)Google Scholar
  263. [263]
    K.H. Han, J.S. Zhang, P. Wargocki, H.N. Knudsen, B. Guo: Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects, Indoor Air 20, 341–354 (2010)CrossRefGoogle Scholar
  264. [264]
    T. Schripp, S. Etienne, C. Fauck, F. Fuhrmann, L. Märk, T. Salthammer: Application of proton-transfer-reaction-mass-spectrometry for indoor air quality research, Indoor Air 24, 178–189 (2014)CrossRefGoogle Scholar
  265. [265]
    A. Manoukian, B. Temime-Roussel, M. Nicolas, F. Maupetit, E. Quivet, H. Wortham: Characteristics of emissions of air pollutants from incense and candle burning in an experimental house, 12th Int. Conf. Indoor Air Qual. Clim., Vol. 1 (2011) pp. 764–769Google Scholar
  266. [266]
    C.-Y. Jiang, S.-H. Sun, Q.-D. Zhang, Y.-P. Ma, H. Wang, J.-X. Zhang, Y.-L. Zong, J.-P. Xie: Application of direct atmospheric pressure chemical ionization tandem mass spectrometry for on-line analysis of gas phase of cigarette mainstream smoke, Int. J. Mass Spectrom. 353, 42–48 (2013)CrossRefGoogle Scholar
  267. [267]
    A. Feilberg, N. Dorno, T. Nyord: Odour emissions following land spreading of animal slurry assessed by proton-transfer-reaction mass spectrometry (PTR-MS), Chem. Eng. Trans. 23, 111–116 (2010)Google Scholar
  268. [268]
    S. Sironi, L. Capelli, P. Céntola, R. Del Rosso, S. Pierucci: Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation, Atmos. Environ. 44, 354–360 (2010)CrossRefGoogle Scholar
  269. [269]
    S. Revah, J. Morgan-Sagastume: Methods of odor and VOC control. In: Biotechnology for Odor and Air Pollution Control, ed. by Z. Shareefdeen, A. Singh (Springer, Berlin, Heidelberg 2005)Google Scholar
  270. [270]
    J.-Q. Ni, W.P. Robarge, C. Xiao, A.J. Heber: Volatile organic compounds at swine facilities: A critical review, Chemosphere 89, 769–788 (2012)CrossRefGoogle Scholar
  271. [271]
    A. Feilberg, T. Nyord, M.N. Hansen, S. Lindholst: Chemical evaluation of odor reduction by soil injection of animal manure, J. Environ. Qual. 40, 1674–1682 (2011)CrossRefGoogle Scholar
  272. [272]
    A. Feilberg, D. Liu, A.P.S. Adamsen, M.J. Hansen, K.E.N. Jonassen: Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry, Environ. Sci. Technol. 44, 5894–5900 (2010)CrossRefGoogle Scholar
  273. [273]
    M.J. Hansen, D. Liu, L.B. Guldberg, A. Feilberg: Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production, J. Agric. Food Chem. 60, 2599–2606 (2012)CrossRefGoogle Scholar
  274. [274]
    D. Liu, A. Feilberg, A.P.S. Adamsen, K.E.N. Jonassen: The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS, Atmos. Environ. 45, 3786–3793 (2011)CrossRefGoogle Scholar
  275. [275]
    E. House: Refinement of PTR-MS Methodology and Application to the Measurement of (O)VOCS from Cattle Slurry, Ph.D. Thesis (The University of Edinburgh, Edinburgh 2009)Google Scholar
  276. [276]
    S.L. Shaw, F.M. Mitloehner, W. Jackson, E.J. DePeters, J.G. Fadel, P.H. Robinson, R. Holzinger, A.H. Goldstein: Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry, Environ. Sci. Technol. 41, 1310–1316 (2007)CrossRefGoogle Scholar
  277. [277]
    D. Smith, P. Španěl, J.B. Jones: Analysis of volatile emissions from porcine faeces and urine using selected ion flow tube mass spectrometry, Bioresource Technol. 75, 27–33 (2000)CrossRefGoogle Scholar
  278. [278]
    F. Biasioli, E. Aprea, F. Gasperi, T.D. Märk: Measuring odour emission and biofilter efficiency in composting plants by proton transfer reaction-mass spectrometry, Water Sci. Technol. 59, 1263–1269 (2009)CrossRefGoogle Scholar
  279. [279]
    F. Biasioli, F. Gasperi, G. Odorizzi, E. Aprea, D. Mott, F. Marini, G. Autiero, G. Rotondo, T.D. Märk: PTR-MS monitoring of odour emissions from composting plants, Int. J. Mass Spectrom. 239, 103–109 (2004)CrossRefGoogle Scholar
  280. [280]
    P.M. Heynderickx, K. Van Huffel, J. Dewulf, H. Van Langenhove: Application of similarity coefficients to SIFT-MS data for livestock emission characterization, Biosyst. Eng. 114, 44–54 (2013)CrossRefGoogle Scholar
  281. [281]
    P.M. Heynderickx, K. Van Huffel, J. Dewulf, H.V. Langenhove: SIFT-MS for livestock emission characterization: Application of similarity coefficients, Chem. Eng. Trans. 30, 157–162 (2012)Google Scholar
  282. [282]
    L. Cappellin, F. Loreto, E. Aprea, A. Romano, J. Sánchez del Pulgar, F. Gasperi, F. Biasioli: PTR-MS in Italy: A multipurpose sensor with applications in environmental, agri-food and health science, Sensors 13, 11923–11955 (2013)CrossRefGoogle Scholar
  283. [283]
    C. Amelynck, N. Schoon, F. Dhooghe: SIFT ion chemistry studies underpinning the measurement of volatile organic compound emissions by vegetation, Curr. Anal. Chem. 9, 540–549 (2013)CrossRefGoogle Scholar
  284. [284]
    G.J. Francis, P.F. Wilson, D.B. Milligan, V.S. Langford, M.J. McEwan: GeoVOC: A SIFT-MS method for the analysis of small linear hydrocarbons of relevance to oil exploration, Int. J. Mass Spectrom. 268, 38–46 (2007)CrossRefGoogle Scholar
  285. [285]
    A. Amann, B. de Lacy Costello, W. Miekisch, J. Schubert, B. Buszewski, J. Pleil, N. Ratcliffe, T. Risby: The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva, J. Breath Res. 8, 034001 (2014)CrossRefGoogle Scholar
  286. [286]
    B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, N.M. Ratcliffe: A review of the volatiles from the healthy human body, J. Breath Res. 8, 014001 (2014)CrossRefGoogle Scholar
  287. [287]
    A. Amann, W. Miekisch, J. Schubert, B. Buszewski, T. Ligor, T. Jezierski, J. Pleil, T. Risby: Analysis of exhaled breath for disease detection, Annu. Rev. Anal. Chem. 7, 455–482 (2014)CrossRefGoogle Scholar
  288. [288]
    J.D. Beauchamp, J.D. Pleil: Breath: An often overlooked medium in biomarker discovery. In: Biomarker Validation. Technological, Clinical and Commercial Aspects, ed. by H. Seitz, S. Schumacher (Wiley, Weinheim 2015)Google Scholar
  289. [289]
    P.J. Martínez-Lozano: Fernández de la Mora: Direct analysis of fatty acid vapors in breath by electrospray ionization and atmospheric pressure ionization-mass spectrometry, Anal. Chem. 80, 8210–8215 (2008)CrossRefGoogle Scholar
  290. [290]
    V. Kapishon, G.K. Koyanagi, V. Blagojevic, D.K. Bohme: Atmospheric pressure chemical ionization mass spectrometry of pyridine and isoprene: Potential breath exposure and disease biomarkers, J. Breath Res. 7, 026005 (2013)CrossRefGoogle Scholar
  291. [291]
    G.K. Koyanagi, V. Kapishon, V. Blagojevic, D.K. Bohme: Monitoring hydrogen sulfide in simulated breath of anesthetized subjects, Int. J. Mass Spectrom. 354/355, 139–143 (2013)CrossRefGoogle Scholar
  292. [292]
    C. Turner, P. Španěl, D. Smith: A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS, Physiol. Meas. 27, 637 (2006)CrossRefGoogle Scholar
  293. [293]
    D. Smith, P. Španěl, B. Enderby, W. Lenney, C. Turner, S.J. Davies: Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS, J. Breath Res. 4, 017101 (2010)CrossRefGoogle Scholar
  294. [294]
    C. Turner, P. Španěl, D. Smith: A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry, Rapid Commun. Mass Spectrom. 20, 61–68 (2006)CrossRefGoogle Scholar
  295. [295]
    J. Huang, S. Kumar, G.B. Hanna: Investigation of C\({}_{3}\)–C\({}_{10}\) aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS), J. Breath Res. 8, 037104 (2014)CrossRefGoogle Scholar
  296. [296]
    D. Smith, A. Pysanenko, P. Španěl: The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 23, 1419–1425 (2009)CrossRefGoogle Scholar
  297. [297]
    K. Dryahina, P. Spanel, V. Pospisilova, K. Sovova, L. Hrdlicka, N. Machkova, M. Lukas, D. Smith: Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 27, 1983–1992 (2013)CrossRefGoogle Scholar
  298. [298]
    P.F. Wilson, C.G. Freeman, M.J. McEwan, D.B. Milligan, R.A. Allardyce, G.M. Shaw: In situ analysis of solvents on breath and blood: A selected ion flow tube mass spectrometric study, Rapid Commun. Mass Spectrom. 16, 427–432 (2002)CrossRefGoogle Scholar
  299. [299]
    M. Storer, J. Salmond, K.N. Dirks, S. Kingham, M. Epton: Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air–pilot study, J. Breath Res. 8, 037106 (2014)CrossRefGoogle Scholar
  300. [300]
    J. King, A. Kupferthaler, B. Frauscher, H. Hackner, K. Unterkofler, G. Teschl, H. Hinterhuber, A. Amann, B. Högl: Measurement of endogenous acetone and isoprene in exhaled breath during sleep, Physiol. Meas. 33, 413 (2012)CrossRefGoogle Scholar
  301. [301]
    J. King, A. Kupferthaler, K. Unterkofler, H. Koc, S. Teschl, G. Teschl, W. Miekisch, J. Schubert, H. Hinterhuber, A. Amann: Isoprene and acetone concentration profiles during exercise on an ergometer, J. Breath Res. 3, 027006 (2009)CrossRefGoogle Scholar
  302. [302]
    J. King, P. Mochalski, A. Kupferthaler, K. Unterkofler, H. Koc, W. Filipiak, S. Teschl, H. Hinterhuber, A. Amann: Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study, Physiol. Meas. 31, 1169 (2010) Google Scholar
  303. [303]
    J. King, K. Unterkofler, G. Teschl, S. Teschl, P. Mochalski, H. Koç, H. Hinterhuber, A. Amann: A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds, J. Breath Res. 6, 016005 (2012)CrossRefGoogle Scholar
  304. [304]
    A. Jordan, A. Hansel, R. Holzinger, W. Lindinger: Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom. Ion Proc. 148, L1–L3 (1995)CrossRefGoogle Scholar
  305. [305]
    T. Karl, A. Jordan, A. Hansel, R. Holzinger, W. Lindinger: Benzene and acetontrile in smokers and nonsmokers, Ber. Nat.-Med. Verein Innsbruck 85, 7–15 (1998)Google Scholar
  306. [306]
    I. Kushch, K. Schwarz, L. Schwentner, B. Baumann, A. Dzien, A. Schmid, K. Unterkofler, G. Gastl, P. Spanel, D. Smith, A. Amann: Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath versus non-smokers as determined in a pilot study using PTR-MS, J. Breath Res. 2, 026002 (2008)CrossRefGoogle Scholar
  307. [307]
    J. Beauchamp, F. Kirsch, A. Buettner: Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules, J. Breath Res. 4, 026006 (2010)CrossRefGoogle Scholar
  308. [308]
    I. Kohl, J. Beauchamp, F. Cakar-Beck, J. Herbig, J. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, S. Langebner, A. Zabernigg, F. Reinstaller, K. Winkler, R. Gutmann, A. Hansel: First observation of a potential non-invasive breath gas biomarker for kidney function, J. Breath Res. 7, 017110 (2013)CrossRefGoogle Scholar
  309. [309]
    R. Fernández del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah, T. Whitehouse, C.A. Mayhew: Volatile biomarkers in breath associated with liver cirrhosis – comparisons of pre- and post-liver transplant breath samples, EBioMedicine 2(9), 1243–1250 (2015)CrossRefGoogle Scholar
  310. [310]
    F. Morisco, E. Aprea, V. Lembo, V. Fogliano, P. Vitaglione, G. Mazzone, L. Cappellin, F. Gasperi, S. Masone, G.D. De Palma, R. Marmo, N. Caporaso, F. Biasioli: Rapid ’breath-print’ of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study, PLoS ONE 8, e59658 (2013)CrossRefGoogle Scholar
  311. [311]
    E. Aprea, L. Cappellin, F. Gasperi, F. Morisco, V. Lembo, A. Rispo, R. Tortora, P. Vitaglione, N. Caporaso, F. Biasioli: Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet, J. Chromatogr. B 966, 208–213 (2014)CrossRefGoogle Scholar
  312. [312]
    S. Halbritter, M. Fedrigo, V. Höllriegl, W. Szymczak, J.M. Maier, A.-G. Ziegler, M. Hummel: Human breath gas analysis in the screening of gestational diabetes mellitus, Diabetes Technol. Ther. 14, 917–925 (2012)CrossRefGoogle Scholar
  313. [313]
    M.E. O’Hara, S. O’Hehir, S. Green, C.A. Mayhew: Development of a protocol to measure volatile organic compounds in human breath: A comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry, Physiol. Meas. 29, 309–330 (2008)CrossRefGoogle Scholar
  314. [314]
    B. Thekedar, U. Oeh, W. Szymczak, C. Hoeschen, H.G. Paretzke: Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations, J. Breath Res. 5, 016001 (2011)CrossRefGoogle Scholar
  315. [315]
    B. Thekedar, W. Szymczak, V. Hollriegl, C. Hoeschen, U. Oeh: Investigations on the variability of breath gas sampling using PTR-MS, J. Breath Res. 3, 027007 (2009)CrossRefGoogle Scholar
  316. [316]
    M.M.L. Steeghs, S.M. Cristescu, F.J.M. Harren: The suitability of Tedlar bags for breath sampling in medical diagnostic research, Physiol. Meas. 28, 73 (2007)CrossRefGoogle Scholar
  317. [317]
    T. Wang, A. Pysanenko, K. Dryahina, P. Spanel, D. Smith: Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity, J. Breath Res. 3, 037013 (2008)CrossRefGoogle Scholar
  318. [318]
    P. Čáp, K. Dryahina, F. Pehal, P. Španěl: Selected ion flow tube mass spectrometry of exhaled breath condensate headspace, Rapid Commun. Mass Spectrom. 22, 2844–2850 (2008)CrossRefGoogle Scholar
  319. [319]
    J. Herbig, A. Amann: Proton transfer reaction-mass spectrometry applications in medical research, J. Breath Res. 3, 020201 (2009)CrossRefGoogle Scholar
  320. [320]
    P. Spanel, D. Smith: Selected ion flow tube mass spectrometry, SIFT-MS, Curr. Anal. Chem. 9, 523–524 (2013)CrossRefGoogle Scholar
  321. [321]
    Y.P. Krespi, M.G. Shrime, A. Kacker: The relationship between oral malodor and volatile sulfur compound – Producing bacteria, Otolaryngol. – Head Neck Surg. 135, 671–676 (2006)CrossRefGoogle Scholar
  322. [322]
    J. Greenman, P. Lenton, R. Seemann, S. Nachnani: Organoleptic assessment of halitosis for dental professionals – General recommendations, J. Breath Res. 8, 017102 (2014)CrossRefGoogle Scholar
  323. [323]
    B.M. Ross, A. Esarik: The analysis of oral air by selected ion flow tube mass spectrometry using indole and methylindole as examples. In: Volatile Biomarkers, ed. by A. Amann, D. Smith (Elsevier, Boston 2013)Google Scholar
  324. [324]
    B.M. Ross, S. Babay, C. Ladouceur: The use of selected ion flow tube mass spectrometry to detect and quantify polyamines in headspace gas and oral air, Rapid Commun. Mass Spectrom. 23, 3973–3982 (2009)CrossRefGoogle Scholar
  325. [325]
    S. Saad, K. Hewett, J. Greenman: Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model, J. Breath Res. 6, 016001 (2012)CrossRefGoogle Scholar
  326. [326]
    D. Smith, T.S. Wang, A. Pysanenko, P. Španěl: A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity, Rapid Commun. Mass Spectrom. 22, 783–789 (2008)CrossRefGoogle Scholar
  327. [327]
    A. Pysanenko, P. Španěl, D. Smith: A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry, J. Breath Res. 2, 046004 (2008)CrossRefGoogle Scholar
  328. [328]
    A. Hansanugrum, S.A. Barringer: Effect of milk on the deodorization of malodorous breath after garlic ingestion, J. Food Sci. 75, C549–C558 (2010)CrossRefGoogle Scholar
  329. [329]
    R. Munch, S.A. Barringer: Deodorization of garlic breath volatiles by food and food components, J. Food Sci. 79, C526–C533 (2014)CrossRefGoogle Scholar
  330. [330]
    J. Taucher, A. Hansel, A. Jordan, W. Lindinger: Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry, J. Agric. Food Chem. 44, 3778–3782 (1996)CrossRefGoogle Scholar
  331. [331]
    E.V. Hartungen, A. Wisthaler, T. Mikoviny, D. Jaksch, E. Boscaini, P.J. Dunphy, T.D. Märk: Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: Determination of Henry’s law constants and axillary odour investigations, Int. J. Mass Spectrom. 239, 243–248 (2004)CrossRefGoogle Scholar
  332. [332]
    R.H. McQueen, R.M. Laing, C.M. Delahunty, H.J.L. Brooks, B.E. Niven: Retention of axillary odour on apparel fabrics, J. Text. Inst. 99, 515–523 (2008)CrossRefGoogle Scholar
  333. [333]
    L. Yao, R.M. Laing, P.J. Bremer, P.J. Silcock, M.J. Leus: Measuring textile adsorption of body odor compounds using proton-transfer-reaction mass spectrometry, Text. Res. J. 85(17), 1817–1829 (2015)CrossRefGoogle Scholar
  334. [334]
    A. Wisthaler, C.J. Weschler: Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air, P. Natl. Acad. Sci. USA 107, 6568–6575 (2010)CrossRefGoogle Scholar
  335. [335]
    M.M.L. Steeghs, B.W.M. Moeskops, K. van Swam, S.M. Cristescu, P.T.J. Scheepers, F.J.M. Harren: On-line monitoring of UV-induced lipid peroxidation products from human skin in vivo using proton-transfer reaction mass spectrometry, Int. J. Mass Spectrom. 253, 58–64 (2006)CrossRefGoogle Scholar
  336. [336]
    C. Turner, B. Parekh, C. Walton, P. Španěl, D. Smith, M. Evans: An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 22, 526–532 (2008)CrossRefGoogle Scholar
  337. [337]
    P.J. Martínez-Lozano: Fernández de la Mora: On-line detection of human skin vapors, J. Am. Soc. Mass Spectr. 20, 1060–1063 (2009)CrossRefGoogle Scholar
  338. [338]
    M.E. O’Hara, T.H. Clutton-Brock, S. Green, C.A. Mayhew: Endogenous volatile organic compounds in breath and blood of healthy volunteers: examining breath analysis as a surrogate for blood measurements, J. Breath Res. 3, 027005 (2009)CrossRefGoogle Scholar
  339. [339]
    M.E. O’Hara, T.H. Clutton-Brock, S. Green, S. O’Hehir, C.A. Mayhew: Mass spectrometric investigations to obtain the first direct comparisons of endogenous breath and blood volatile organic compound concentrations in healthy volunteers, Int. J. Mass Spectrom. 281, 92–96 (2009)CrossRefGoogle Scholar
  340. [340]
    S.M. Abbott, J.B. Elder, P. Spanel, D. Smith: Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry, Int. J. Mass Spectrom. 228, 655–665 (2003)CrossRefGoogle Scholar
  341. [341]
    A. Pysanenko, T. Wang, P. Španěl, D. Smith: Acetone, butanone, pentanone, hexanone and heptanone in the headspace of aqueous solution and urine studied by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 23, 1097–1104 (2009)CrossRefGoogle Scholar
  342. [342]
    T. Wang, P. Španěl, D. Smith: Selected ion flow tube mass spectrometry of 3-hydroxybutyric acid, acetone and other ketones in the headspace of aqueous solution and urine, Int. J. Mass Spectrom. 272, 78–85 (2008)CrossRefGoogle Scholar
  343. [343]
    J.Z. Huang, S. Kumar, N. Abbassi-Ghadi, P. Španěl, D. Smith, G.B. Hanna: Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer, Anal. Chem. 85, 3409–3416 (2013)CrossRefGoogle Scholar
  344. [344]
    G.-M. Pinggera, P. Lirk, F. Bodogri, R. Herwig, G. Steckel-Berger, G. Bartsch, J. Rieder: Urinary acetonitrile concentrations correlate with recent smoking behaviour, BJU Int. 95, 306–309 (2005)CrossRefGoogle Scholar
  345. [345]
    D. Samudrala, B. Geurts, P. Brown, E. Szymańska, J. Mandon, J. Jansen, L. Buydens, F.M. Harren, S. Cristescu: Changes in urine headspace composition as an effect of strenuous walking, Metabolomics 11, 1656–1666 (2015)CrossRefGoogle Scholar
  346. [346]
    S. Stadler, P.-H. Stefanuto, M. Brokl, S.L. Forbes, J.-F. Focant: Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography – Time-of-flight mass spectrometry, Anal. Chem. 85, 998–1005 (2012)CrossRefGoogle Scholar
  347. [347]
    M. Statheropoulos, C. Spiliopoulou, A. Agapiou: A study of volatile organic compounds evolved from the decaying human body, Forensic Sci. Int. 153, 147–155 (2005)CrossRefGoogle Scholar
  348. [348]
    P.H. Stefanuto, K. Perrault, S. Stadler, R. Pesesse, M. Brokl, S. Forbes, J.F. Focant: Reading cadaveric decomposition chemistry with a new pair of glasses, ChemPlusChem 79, 786–789 (2014)CrossRefGoogle Scholar
  349. [349]
    J. Dekeirsschieter, P.H. Stefanuto, C. Brasseur, E. Haubruge, J.F. Focant: Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS), PLoS ONE 7, e39005 (2012)CrossRefGoogle Scholar
  350. [350]
    A.A. Vass: Odor mortis, Forensic Sci. Int. 222, 234–241 (2012)CrossRefGoogle Scholar
  351. [351]
    A.A. Vass, R.R. Smith, C.V. Thompson, M.N. Burnett, N. Dulgerian, B.A. Eckenrode: Odor analysis of decomposing buried human remains, J. Forensic Sci. 53, 384–391 (2008)CrossRefGoogle Scholar
  352. [352]
    M. Statheropoulos, E. Sianos, A. Agapiou, A. Georgiadou, A. Pappa, N. Tzamtzis, H. Giotaki, C. Papageorgiou, D. Kolostoumbis: Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes, J. Chromatogr. B 822, 112–117 (2005)CrossRefGoogle Scholar
  353. [353]
    A. Agapiou, K. Mikedi, S. Karma, Z.K. Giotaki, D. Kolostoumbis, C. Papageorgiou, E. Zorba, C. Spiliopoulou, A. Amann, M. Statheropoulos: Physiology and biochemistry of human subjects during entrapment, J. Breath Res. 7, 016004 (2013)CrossRefGoogle Scholar
  354. [354]
    S. Stadler, P.H. Stefanuto, J.D. Byer, M. Brokl, S. Forbes, J.F. Focant: Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, J. Chromatogr. A 1255, 202–206 (2012)CrossRefGoogle Scholar
  355. [355]
    C.A. Tipple, P.T. Caldwell, B.M. Kile, D.J. Beussman, B. Rushing, N.J. Mitchell, C.J. Whitchurch, M. Grime, R. Stockham, B.A. Eckenrode: Comprehensive characterization of commercially available canine training aids, Forensic Sci. Int. 242, 242–254 (2014)CrossRefGoogle Scholar
  356. [356]
    J. Rudnicka, P. Mochalski, A. Agapiou, M. Statheropoulos, A. Amann, B. Buszewski: Application of ion mobility spectrometry for the detection of human urine, Anal Bioanal Chem 398, 2031–2038 (2010)CrossRefGoogle Scholar
  357. [357]
    R. Huo, A. Agapiou, V. Bocos-Bintintan, L.J. Brown, C. Burns, C.S. Creaser, N.A. Devenport, B. Gao-Lau, C. Guallar-Hoyas, L. Hildebrand, A. Malkar, H.J. Martin, V.H. Moll, P. Patel, A. Ratiu, J.C. Reynolds, S. Sielemann, R. Slodzynski, M. Statheropoulos, M.A. Turner, W. Vautz, V.E. Wright, C.L. Thomas: The trapped human experiment, J. Breath Res. 5, 046006 (2011)CrossRefGoogle Scholar
  358. [358]
    V. Ruzsanyi, P. Mochalski, A. Schmid, H. Wiesenhofer, M. Klieber, H. Hinterhuber, A. Amann: Ion mobility spectrometry for detection of skin volatiles, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 911, 84–92 (2012)CrossRefGoogle Scholar
  359. [359]
    P. Mochalski, K. Unterkofler, H. Hinterhuber, A. Amann: Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO\({}^{+}\) mode, Anal. Chem. 86, 3915–3923 (2014)CrossRefGoogle Scholar
  360. [360]
    L. Sichu: Recent developments in human odor detection technologies, J. Forensic. Sci. Crim. 1, 1–12 (2014)Google Scholar
  361. [361]
    R.L. Doty, P. Shaman, C.P. Kimmelman, M.S. Dann: University of Pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic, Laryngoscope 94, 176–178 (1984)CrossRefGoogle Scholar
  362. [362]
    W.S. Cain, R.B. Goodspeed, J.F. Gent, G. Leonard: Evaluation of olfactory dysfunction in the connecticut chemosensory clinical research center, Laryngoscope 98, 83–88 (1988)CrossRefGoogle Scholar
  363. [363]
    T. Hummel, B. Sekinger, S.R. Wolf, E. Pauli, G. Kobal: ’Sniffin’ Sticks’: Olfactory performance assessed by the combined testing of odour identification, odor discrimination and olfactory threshold, Chem. Senses 22, 39–52 (1997)CrossRefGoogle Scholar
  364. [364]
    J. Albrecht, A. Anzinger, R. Kopietz, V. Schopf, A.M. Kleemann, O. Pollatos, M. Wiesmann: Test-retest reliability of the olfactory detection threshold test of the Sniffin’ Sticks, Chem. Senses 33, 461–467 (2008)CrossRefGoogle Scholar
  365. [365]
    G. Kobal, L. Klimek, M. Wolfensberger, H. Gudziol, A. Temmel, C.M. Owen, H. Seeber, E. Pauli, T. Hummel: Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds, Eur. Arch. Oto.-Rhino.-L. 257, 205–211 (2000)CrossRefGoogle Scholar
  366. [366]
    E.J. Haberland, A. Kraus, K. Pilchowski, H. Gudziol, W. Lorenz, M. Bloching: Kinetics of N-butanol release from the tip of Sniffin’ Sticks, 76. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e.V., Erfurt (2005)Google Scholar
  367. [367]
    M. Denzer, S. Gailer, D. Kern, L.P. Schumm, N. Thuerauf, J. Kornhuber, A. Buettner, J. Beauchamp: Quantitative validation of the n-butanol Sniffin’ Sticks threshold pens, Chem. Percept. 7, 91–101 (2014)CrossRefGoogle Scholar
  368. [368]
    G. Kobal, C. Hummel: Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa, Electroen. Clin. Neuro. 71, 241–250 (1988)CrossRefGoogle Scholar
  369. [369]
    J.N. Lundström, A.R. Gordon, E.C. Alden, S. Boesveldt, J. Albrecht: Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments, Int. J. Psychophysiol. 78, 179–189 (2010)CrossRefGoogle Scholar
  370. [370]
    J. Beauchamp, J. Frasnelli, A. Buettner, M. Scheibe, A. Hansel, T. Hummel: Characterization of an olfactometer by proton-transfer-reaction mass spectrometry, Meas. Sci. Technol. 21, 025801 (2010)CrossRefGoogle Scholar
  371. [371]
    C. Walgraeve, K. Van Huffel, J. Bruneel, H. Van Langenhove: Evaluation of the performance of field olfactometers by selected ion flow tube mass spectrometry, Biosyst. Eng. 137, 84–94 (2015)CrossRefGoogle Scholar
  372. [372]
    P.M.T. de Kok, A.E.M. Boelrijk, C. de Jong, M.J.M. Burgering, M.A. Jacobs: MS-nose flavour release profile mimic using an olcactometer. In: Flavour Science: Recent Advances and Trends, Developments in Food Science, Vol. 43, ed. by W.L.P. Bredie, M.A. Petersen (Elsevier, Amsterdam 2006)Google Scholar
  373. [373]
    A.J. Taylor, S. Skelton, L.L. Jones: Measuring odor delivery for sensory testing, Flav. Sci. Proc. XIII Weurman Flav. Res. Symp., Zaragoza (2014)Google Scholar
  374. [374]
    M. Scheibe, T. Zahnert, T. Hummel: Topographical differences in the trigeminal sensitivity of the human nasal mucosa, Neuroreport 17, 1417–1420 (2006)CrossRefGoogle Scholar
  375. [375]
    S. Heilmann, T. Hummel: A new method for comparing orthonasal and retronasal olfaction, Behav. Neurosci. 118, 412–419 (2004)CrossRefGoogle Scholar
  376. [376]
    J. Frasnelli, S. van Ruth, I. Kriukova, T. Hummel: Intranasal concentrations of orally administered flavors, Chem. Senses 30, 575–582 (2005)CrossRefGoogle Scholar
  377. [377]
    A. Buettner, S. Otto, A. Beer, M. Mestres, P. Schieberle, T. Hummel: Dynamics of retronasal aroma perception during consumption: Cross-linking on-line breath analysis with medico-analytical tools to elucidate a complex process, Food Chem. 108, 1234–1246 (2008)CrossRefGoogle Scholar
  378. [378]
    A. Buettner, A. Beer, C. Hannig, M. Settles: Observation of the swallowing process by application of videofluoroscopy and real-time magnetic resonance imaging-consequences for retronasal aroma stimulation, Chem. Senses 26, 1211–1219 (2001)CrossRefGoogle Scholar
  379. [379]
    J. Beauchamp, M. Scheibe, T. Hummel, A. Buettner: Intranasal odorant concentrations in relation to sniff behavior, Chem. Biodivers. 11, 619–638 (2014)CrossRefGoogle Scholar
  380. [380]
    D.W. Kern, J. Beauchamp, M. Scheibe, T. Hummel, M.K. McClintock, A. Buettner: Odorant measurement at the olfactory cleft using proton-transfer-reaction mass spectrometry, The Assoc. Chemorecept. Sci. 35th Annu. Meet., Huntington Beach (2013)Google Scholar
  381. [381]
    M. Yabuki, K. Portman, D. Scott, L. Briand, A. Taylor: DyBOBS: A dynamic biomimetic assay for odorant-binding to odor-binding protein, Chem. Percept. 3, 108–117 (2010)CrossRefGoogle Scholar
  382. [382]
    M. Yabuki, D.J. Scott, L. Briand, A.J. Taylor: Dynamics of odorant binding to thin aqueous films of rat-OBP3, Chem. Senses 36, 659–671 (2011)CrossRefGoogle Scholar
  383. [383]
    L. Marciani, J.C. Pfeiffer, J. Hort, K. Head, D. Bush, A.J. Taylor, R.C. Spiller, S. Francis, P.A. Gowland: Improved methods for fMRI studies of combined taste and aroma stimuli, J. Neurosci. Meth. 158, 186–194 (2006)CrossRefGoogle Scholar
  384. [384]
    Y. Seto: On-site detection of chemical warfare agents. In: Handbook of Toxicology of Chemical Warfare Agents, ed. by R.C. Gupta (Academic Press, San Diego 2009)Google Scholar
  385. [385]
    R. Sferopoulos: A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-off-the-Shelf Items (Australian Government Department of Defence Human Protection and Performance Division DSTO, Melbourne 2009)Google Scholar
  386. [386]
    H.H. Hill Jr, S.J. Martin: Conventional analytical methods for chemical warfare agents, Pure Appl. Chem. 74(12), 2281–2291 (2002)CrossRefGoogle Scholar
  387. [387]
    J. Zheng, T. Shu, J. Jin: Ion mobility spectrometry for monitoring chemical warfare agents, Appl. Mech. Mater. 241-244, 980–983 (2013)CrossRefGoogle Scholar
  388. [388]
    S. Goetz: The unseen menace, New Electronics 36, 23–24 (2003)Google Scholar
  389. [389]
    T. Keller, A. Keller, E. Tutsch-Bauer, F. Monticelli: Application of ion mobility spectrometry in cases of forensic interest, Forensic Sci. Int. 161, 130–140 (2006)CrossRefGoogle Scholar
  390. [390]
    F. Gunzer, S. Zimmermann, W. Baether: Application of a nonradioactive pulsed electron source for ion mobility spectrometry, Anal. Chem. 82, 3756–3763 (2010)CrossRefGoogle Scholar
  391. [391]
    S. Armenta, M. Alcala, M. Blanco: A review of recent, unconventional applications of ion mobility spectrometry (IMS), Anal. Chim. Acta 703, 114–123 (2011)CrossRefGoogle Scholar
  392. [392]
    Y. Seto: On-site detection as a countermeasure to chemical warfare/terrorism, Forensic Sci. Rev. 26, 24–48 (2014)Google Scholar
  393. [393]
    S.W. Lemire, D.H. Ash, R.C. Johnson, J.R. Barr: Mass spectral behavior of the hydrolysis products of sesqui- and oxy-mustard type chemical warfare agents in atmospheric pressure chemical ionization, J. Am. Soc. Mass Spectr. 18, 1364–1374 (2007)CrossRefGoogle Scholar
  394. [394]
    S.N. Ketkar, S.M. Penn, W.L. Fite: Real-time detection of parts per trillion levels of chemical warfare agents in ambient air using atmospheric pressure ionization tandem quadrupole mass spectrometry, Anal. Chem. 63, 457–459 (1991)CrossRefGoogle Scholar
  395. [395]
    I. Cotte-Rodriguez, D.R. Justes, S.C. Nanita, R.J. Noll, C.C. Mulligan, N.L. Sanders, R.G. Cooks: Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry, Analyst 131, 579–589 (2006)CrossRefGoogle Scholar
  396. [396]
    Y. Seto, M. Kanamori-Kataoka, K. Tsuge, I. Ohsawa, K. Iura, T. Itoi, H. Sekiguchi, K. Matsushita, S. Yamashiro, Y. Sano, H. Sekiguchi, H. Maruko, Y. Takayama, R. Sekioka, A. Okumura, Y. Takada, H. Nagano, I. Waki, N. Ezawa, H. Tanimoto, S. Honjo, M. Fukano, H. Okada: Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction, Anal. Chem. 85, 2659–2666 (2013)CrossRefGoogle Scholar
  397. [397]
    G.J. Francis, D.B. Milligan, M.J. McEwan: Detection and quantification of chemical warfare agent precursors and surrogates by selected ion flow tube mass spectrometry, Anal. Chem. 81, 8892–8899 (2009)CrossRefGoogle Scholar
  398. [398]
    F. Petersson, P. Sulzer, C.A. Mayhew, P. Watts, A. Jordan, L. Märk, T.D. Mark: Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 23, 3875–3880 (2009)CrossRefGoogle Scholar
  399. [399]
    T. Kassebacher, P. Sulzer, S. Jürschik, E. Hartungen, A. Jordan, A. Edtbauer, S. Feil, G. Hanel, S. Jaksch, L. Märk, C.A. Mayhew, T.D. Märk: Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario, Rapid Commun. Mass Spectrom. 27, 325–332 (2013)CrossRefGoogle Scholar
  400. [400]
    J.M. Ringer: Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas, Eur. J. Mass Spectrom. 19, 175–185 (2013)CrossRefGoogle Scholar
  401. [401]
    A.J. Midey, T.M. Miller, A.A. Viggiano, N.C. Bera, S. Maeda, K. Morokuma: Ion chemistry of VX surrogates and ion energetics properties of VX: New suggestions for VX chemical ionization mass spectrometry detection, Anal. Chem. 82, 3764–3771 (2010)CrossRefGoogle Scholar
  402. [402]
    K.D. Cook, K.H. Bennett, M.L. Haddix: On-line mass spectrometry: A faster route to process monitoring and control, Ind. Eng. Chem. Res. 38, 1192–1204 (1999)CrossRefGoogle Scholar
  403. [403]
    Y.-C. Chen, P.L. Urban: Time-resolved mass spectrometry, TrAC Trend. Anal. Chem. 44, 106–120 (2013)CrossRefGoogle Scholar
  404. [404]
    W. Singer, R. Gutmann, J. Dunkl, A. Hansel: PTR-MS technology for process monitoring and control in biotechnology, J. Proc. Anal. Chem. 11, 1–4 (2010)Google Scholar
  405. [405]
    M. Luchner, T. Schmidberger, G. Striedner: Bioprosess monitoring: Real-time approach, Eur. BioPharm. Rev. 50, 52–55 (2014)Google Scholar
  406. [406]
    T. Schmidberger, R. Gutmann, K. Bayer, J. Kronthaler, R. Huber: Advanced online monitoring of cell ulture off-gas using proton transfer reaction mass spectrometry, Biotechnol. Prog. 30, 496–504 (2014)CrossRefGoogle Scholar
  407. [407]
    J. Herbig, R. Gutmann, K. Winkler, A. Hansel, G. Sprachmann: Real-time monitoring of trace gas concentrations in syngas, Oil Gas Sci. Technol. 69, 363–372 (2014)CrossRefGoogle Scholar
  408. [408]
    V.S. Langford, I. Graves, M.J. McEwan: Rapid monitoring of volatile organic compounds: A comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 28, 10–18 (2014)CrossRefGoogle Scholar
  409. [409]
    D. Smith, P. Španěl: Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection, TrAC Trend. Anal. Chem. 30, 945–959 (2011)CrossRefGoogle Scholar
  410. [410]
    M. Yamada, M. Suga, I. Waki, M. Sakamoto, M. Morita: Continuous monitoring of polychlorinated biphenyls in air using direct sampling APCI/ITMS, Int. J. Mass Spectrom. 244, 65–71 (2005)CrossRefGoogle Scholar
  411. [411]
    S. Barber, R.S. Blake, I.R. White, P.S. Monks, F. Reich, S. Mullock, A.M. Ellis: Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel, Anal. Chem. 84, 5387–5391 (2012)CrossRefGoogle Scholar
  412. [412]
    D. Materić, M. Lanza, P. Sulzer, J. Herbig, D. Bruhn, C. Turner, N. Mason, V. Gauci: Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC, Anal. Bioanal. Chem. 407(25), 7757–7763 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Process Engineering and Packaging (IVV)FreisingGermany

Personalised recommendations