Advertisement

Physico-Chemical Interactions in the Flavor-Release Process

  • Anne-Marie Seuvre
  • Andrée Voilley
Part of the Springer Handbooks book series (SHB)

Abstract

The perception of flavor is induced by the release of aroma compounds in the vapor phase. The olfactory perception is not only related to the nature of aroma compounds initially present in the food, but also to their distribution between the different phases. After a description of the interactions established between the aroma compounds and different constituents of food, this chapter looks at physico-chemical characteristics of aroma compounds and at the composition and properties of food matrices. Then, in order to understand the behavior of aroma compounds in the matrices, study methods of interactions are described. The assessment of the release is done by determining the partition coefficients and mass transfer between phases. The conclusion opens the way on the preservation of aroma compounds.

Keywords

Partition Coefficient Aroma Compound Volatile Compound Vapor Phase Starch Hydrolysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
3-D

three-dimensional

BSA

bovine serum albumin

GC

gas chromatography

HLB

hydrophilic-lipophilic balance

NMR

nuclear magnetic resonance

Notes

Acknowledgements

The authors thank Pr J.P. Gay and Pr. A. Buettner for their help in the English language.

References

  1. [1]
    M.A. Espinosa Díaz: Etude de la Rétention et de la Libération des Composés d’Arôme dans des Milieux Modèles en Présence ou non de β-lactoglobuline, Ph.D Thesis (Université de Bourgogne, Dijon 1999), in FrenchGoogle Scholar
  2. [2]
    S. Langourieux, J. Crouzet: Protein-aroma interactions. In: Food Macromolecules and Colloids, ed. by E. Dickinson, D. Lorient (The Royal Society of Chemistry, Cambridge 1995) pp. 122–133Google Scholar
  3. [3]
    E. Jouenne: Etude des Interactions entre la β-lactoglobuline et les Composés d’Arôme, Ph.D. Thesis (Université de Montpellier II, Montpellier 1997), in FrenchGoogle Scholar
  4. [4]
    A. Sadafian, J. Crouzet: Infinite dilution activity coefficients and relative volatilities of some aroma compounds, Flavour Fragr. J. 2, 103–107 (1987)CrossRefGoogle Scholar
  5. [5]
    P. Landy: Comportement Thermodynamique et Cinétique de Petites Molécules dans des Matrices Alimentaires, Ph.D. Thesis (Université de Bourgogne, Dijon 1998), in FrenchGoogle Scholar
  6. [6]
    J. Li, P.W. Carr: Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water, Anal. Chem. 65, 1443–1450 (1993)CrossRefGoogle Scholar
  7. [7]
    A. Gerschel: Liaisons Intermoléculaires, les Forces en jeu Dans la Matière Condensée (Inter Editions/CNRS Editions, Paris 1995), in FrenchGoogle Scholar
  8. [8]
    H. Richard: Connaissance de la nature des arômes. In: Les Arômes Alimentaires, ed. by H. Richard, J.L. Multon (Tec and Doc – Lavoisier, Paris 1992) pp. 22–37, in FrenchGoogle Scholar
  9. [9]
    J. Crouzet: Les arômes alimentaires. In: Techniques de L’ingénieur, F4100, Editions T.I. (Weka group, Paris 2001) pp. 1001–1019, in French Google Scholar
  10. [10]
    H.D. Belitz, W. Grosch, P. Schieberle (Eds.): Aroma Compounds in Food Chemistry, 4th edn. (Springer, Berlin, Heidelberg 2009)Google Scholar
  11. [11]
    G.A. Reineccius, S.J. Risch: Encapsulation of artificial flavors by cyclodextrins, Perf. Flav. 11, 3–6 (1986)Google Scholar
  12. [12]
    M. Dornier, J.C. Jallageas, M. Serpelloni, L. Mentink, J. Crouzet: Determination of association constant between β-cyclodextrin and aroma compounds, 5th Minutes Int. Symp. Cyclodext. (1990) pp. 230–233Google Scholar
  13. [13]
    M.A. Rutschmann, J. Heiniger, V. Pliska, J. Solms: Formation of inclusion complexes of starch with different organic compounds. I methods of evaluation of binding profiles with menthone as an example, Lebensm.-Wiss. Technol. 22, 240–244 (1989)Google Scholar
  14. [14]
    M.A. Rutschmann, J. Solms: Formation of inclusion complexes of starch with different organic compounds. Study of ligand binding in binary model systems with decanal, 1-naphtol, monostearate and monopalmitate, Lebensm.-Wiss. Technol. 23, 70–79 (1990)Google Scholar
  15. [15]
    S.G. Ring, M.A. Whittam: Linear dextrins. In: Biotechnology of Amylodextrin Oligosaccharides, ed. by R.B. Friedman (American Chemical Society, Washington 1991) pp. 273–293CrossRefGoogle Scholar
  16. [16]
    M.A. Godshall: How carbohydrate influence food flavor, Food Technol. 51, 63–67 (1997)Google Scholar
  17. [17]
    J. Szejtli: Cyclodextrin Technology (Kluwer, Boston 1988)CrossRefGoogle Scholar
  18. [18]
    L. Szente, J. Szejtli: Stabilisation of flavors by cyclodextrins. In: Flavor Encapsulation, ed. by S. Risch, G. Reineccius (American Chemical Society, Washington 1988) pp. 148–157CrossRefGoogle Scholar
  19. [19]
    A.R. Hedges, W.J. Shieh, C.T. Sikorski: Use of cyclodextrins for encapsulation in the use and treatment of food products. In: Encapsulation and Controlled Release of Food Ingredients, ed. by S.J. Risch, G.A. Reineccius (American Chemical Society, Washington 1995) pp. 60–73CrossRefGoogle Scholar
  20. [20]
    T.H. Nah, E.H. Cho, M.D. Jang, Y.K. Lee, J.H. Park: Binding forces contributing to reversed-phase liquid chromatographic retention on a β-cyclodextrin bonded phase, J. Chromatogr. A 722, 41–46 (1996)CrossRefGoogle Scholar
  21. [21]
    M.R. Eftink, M.L. Andy, K. Bystrom, H.D. Perlmutter, D.S. Kristol: Cyclodextrin inclusion complexes: Studies of the variation in the size of acyclic guests, J. Am. Chem. Soc. 111, 6765–6772 (1989)CrossRefGoogle Scholar
  22. [22]
    O.S. Tee, A.A. Fedortchenko, P.G. Loncke, T. Gadosy: Binding of aliphatic ketones to cyclodextrins in aqueous solution, J. Chem. Soc. Perkin Trans. 2, 1243–1249 (1996)CrossRefGoogle Scholar
  23. [23]
    K. Kano: Selectivities in cyclodextrins chemistry. In: Bioorganic Chemistry Frontiers, Vol. 3, ed. by H. Dugas, F.P. Schmidtchen (Springer, Berlin, Heidelberg 1993) pp. 1–23CrossRefGoogle Scholar
  24. [24]
    W. Cromwell, K. Byström, M.R. Eftink: Cyclodextrin-adamantanecarboxylate inclusion complexes: Studies of the variation in cavity size, J. Phys. Chem. 89, 326–332 (1984)CrossRefGoogle Scholar
  25. [25]
    I. Goubet, J.-L. Le Quere, A. Voilley: Retention of aroma compounds by carbohydrates: Influence of their physicochemical characteristics and of their physical state. A review, J. Agric. Food Chem. 46, 1981–1990 (1998)CrossRefGoogle Scholar
  26. [26]
    S. Langourieux, J. Crouzet: Interactions between polysaccharides and aroma compounds. In: Food flavors: Generation, Analysis and Process Influence, ed. by G. Charalambous (Elsevier, Amsterdam 1995) pp. 1173–1185CrossRefGoogle Scholar
  27. [27]
    M. Le Thanh, P. Thibeaudeau, M.A. Thibaut, A. Voilley: Interactions between volatile and non-volatile compounds in the presence of water, Food Chem. 43, 129–135 (1992)CrossRefGoogle Scholar
  28. [28]
    A. Voilley: Flavor encapsulation influence of encapsulation media on aroma retention during drying. In: Encapsulation and Controlled Release of Food Ingredients, ed. by S.J. Risch, G.A. Reineccius (American Chemical Society, Washington 1995) pp. 169–179CrossRefGoogle Scholar
  29. [29]
    H.G. Maier: Binding of volatile aroma substances to nutrients and foodstuffs, Proc. Int. Symp. Aroma Research (1975) pp. 143–157Google Scholar
  30. [30]
    W.E. Bangs, G.A. Reineccius: Influence of dryer infeed matrices on the retention of volatile flavor compounds during spray drying, J. Food Sci. 47, 254–259 (1981)CrossRefGoogle Scholar
  31. [31]
    D.D. Roberts, J.S. Elmore, K.R. Langley, J. Bakker: Effects of sucrose, guar gum, and carboxymethylcellulose on the release of volatile flavor compounds under dynamic conditions, J. Agric. Food Chem. 44, 1321–1326 (1996)CrossRefGoogle Scholar
  32. [32]
    E. Philippe, A.-M. Seuvre, A. Voilley: Estimation de la pression de vapeur saturante des composés d’arôme, comparaison avec les valeurs expérimentales, Récents Prog. Génie Procéd Génie Prod. Formul. 84, 153–160 (2001), in FrenchGoogle Scholar
  33. [33]
    C.R. Reid, J.M. Prausnitz, B.E. Poling: The Properties of Gases and Liquids, 4th edn. (McGraw-Hill Book, New York 1987)Google Scholar
  34. [34]
    K.M. Watson: Thermodynamics of the liquid state - generalized prediction of properties, Ind. Eng. Chem. 35(4), 398–406 (1943)CrossRefGoogle Scholar
  35. [35]
    B.I. Lee, M.G. Kesler: A generalized thermodynamic correlation based on three parameter corresponding states, AIChE J. 21, 510–527 (1975)CrossRefGoogle Scholar
  36. [36]
    M. Gomez-Nieto, G. Thodos: Generalized vapor pressure equation for nonpolar substances, Ind. Eng. Chem. Fundam. 17, 45–51 (1978)CrossRefGoogle Scholar
  37. [37]
    D. Mackay, A. Bobra, D.W. Chan, W.Y. Shiu: Vapor-pressure correlations for the low-volatility environmental chemicals, Environ. Sci. Technol. 16, 645–649 (1982)CrossRefGoogle Scholar
  38. [38]
    W.J. Lyman: Estimation of physical properties. In: Environmental Exposure from Chemicals, ed. by W.B. Neely, G.E. Blau (CRC Press, Florida 1985) pp. 13–47Google Scholar
  39. [39]
    C. Antoine: Tensions de vapeurs: nouvelle relation entre les tensions et les temperatures, CR Acad. Sci. 107, 681–684 (1888)Google Scholar
  40. [40]
    C.F. Grain: Liquid viscosity. In: Handbook of Chemical Property Estimation Methods: Environmental Behaviour of Organic Compounds, ed. by W.J. Lyman, W.F. Reehl, D.H. Rosenblatt (American Chemical Society, Washington D.C. 1990) p. 14.1Google Scholar
  41. [41]
    J. Sangster: Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, Vol. 2 (Wiley, Chichester 1997)Google Scholar
  42. [42]
    R.F. Rekker: The hydrophobic fragmental constant. In: Pharmacochemistry Library, ed. by W. Nauta, R.F. Rekker (Elsevier Scientific, Amsterdam 1977), Chapter 1Google Scholar
  43. [43]
    A. Lebovits: Permeability of polymers to gases, vapors and liquids, Mod. Plast. 43(7), 139–213 (1966)Google Scholar
  44. [44]
    C.E. Roger: Permeation of gases and vapours in polymers. In: Polymer Permeability, ed. by J. Comyn (Elsevier, New York 1985) pp. 509–635Google Scholar
  45. [45]
    G.J. Pierotti, C.H. Deal, E.L. Derr: Activity coefficient and molecular structure, Ind. Eng. Chem. 51, 95–102 (1959)CrossRefGoogle Scholar
  46. [46]
    A. Fredenslund, R.L. Jones, J.M. Prausnitz: Group-contribution estimation of activity coefficients in non ideal liquid mixtures, AIChE Journal 21, 1086–1098 (1975)CrossRefGoogle Scholar
  47. [47]
    J.E. Amoore, R.G. Buttery: Partition coefficients and comparative olfactometry, Chem. Sens. Flavour 3, 57–71 (1978)CrossRefGoogle Scholar
  48. [48]
    M. Le Thanh, T. Lamer, A. Voilley, J. Jose: Détermination des coefficients de partage vapeur-liquide et d’activité de composés d’arôme à partir de leur caractéristiques physico-chimiques, J. Chim. Phys. 90, 545–560 (1993), in FrenchGoogle Scholar
  49. [49]
    A. Lebert, D. Richon: Infinite dilution activity coefficients of n-alcohols as a function of dextrin concentration in water-dextrin systems, J. Agric. Food Chem. 32, 1156–1161 (1984)CrossRefGoogle Scholar
  50. [50]
    F. Sorrentino, A. Voilley, D. Richon: Activity coefficient of aroma compounds in model food systems, AIChE Journal 32, 1988–1993 (1986)CrossRefGoogle Scholar
  51. [51]
    C. Whorton: Factors influencing volatile release from encapsulation matrices. In: Encapsulation and Controlled Release of Food Ingredients, ed. by S. Risch, G.A. Reineccius (American Chemical Society, Washington 1995) pp. 134–144CrossRefGoogle Scholar
  52. [52]
    S.K. Chandrasekaran: Spray drying of food liquids and volatiles retention. In: Preconcentration and Drying of Food Materials, ed. by S. Bruin (Elsevier, Amsterdam 1988) pp. 147–162Google Scholar
  53. [53]
    G.A. Reineccius: Spray-drying of food flavors. In: Flavor Encapsulation, ed. by S.J. Risch, G.A. Reineccius (American Chemical Society, Washington 1988) pp. 55–64CrossRefGoogle Scholar
  54. [54]
    W.W. Nawar: Some considerations in interpretation of direct headspace gas chromatographic analyses of food volatiles, Food Technol. 213, 115–117 (1966)Google Scholar
  55. [55]
    J. Solms, F. Osman-Ismail, M. Beyeler: The Interaction of Volatiles with Food Components, Can. Inst. Food Sci. Technol. J. 6, A10–A16 (1973)CrossRefGoogle Scholar
  56. [56]
    J. Solms: Interactions of non-volatile and volatile substances in foods. In: Interactions of Foods Components, ed. by G.C. Birch, M.G. Lindley (Elsevier, London 1986) pp. 189–210Google Scholar
  57. [57]
    C. Jouquand, Y. Aguni, C. Malhiac, M.M. Grisel: Influence of chemical composition of polysaccharides on aroma retention, Food Hydrocolloids 22, 1097–1104 (2008)CrossRefGoogle Scholar
  58. [58]
    J.E. Kinsella: Flavor perception and binding, Int. News Fat Oils Relat. Mater. 1, 215–226 (1990)Google Scholar
  59. [59]
    C. Jouquand, V. Ducruet, P. Giampaoli: Partition coefficients of aroma compounds in polysaccharide solutions by the phase ratio variation method, Food Chem. 85(3), 467–474 (2004)CrossRefGoogle Scholar
  60. [60]
    A. Juteau, N. Cayot, C. Chabanet, J.-L. Doublier, E. Guichard: Flavour release from polysaccharide gels: Different approaches for the determination of kinetic parameters, Trends Food Sci. Technol. 15, 394–402 (2004)CrossRefGoogle Scholar
  61. [61]
    M. Terta, G. Blekas, A. Paraskevopoulou: Retention of selected aroma compounds by polysaccharide solutions: A thermodynamic and kinetic approach, Food Hydrocoll. 20, 863–871 (2006)CrossRefGoogle Scholar
  62. [62]
    F. Shahidi, X.Q. Han: Encapsulation of food ingredients, Crit. Rev. Food Sci. Nutr. 33, 501–547 (1993)CrossRefGoogle Scholar
  63. [63]
    L. Lethuaut, C. Brossard, F. Rousseau, B. Bousseau, C. Genot: Sweetness-texture interactions in model dairy desserts: Effect of sucrose concentration and the carrageenan type, Int. Dairy J. 13, 631–641 (2003)CrossRefGoogle Scholar
  64. [64]
    L. Lethuaut, C. Brossard, A. Meynier, F. Rousseau, G. Llamas, B. Bousseau, C. Genot: Sweetness and aroma perceptions in dairy desserts varying in sucrose and aroma levels and in textural agent, Int. Dairy J. 15(5), 485–493 (2005)CrossRefGoogle Scholar
  65. [65]
    P. Langley-Danysz: La cocrystallisation, nouveau mode d’encapsulation, R. I. A. 475, 44–45 (1992)Google Scholar
  66. [66]
    H.E. Swisher: Solid flavoring composition and method of preparing the same, US Patent 2809895A (1957)Google Scholar
  67. [67]
    H.E. Swisher: Solid essential oil flavoring composition and process for preparing the same, US Patent 3041180A (1962)Google Scholar
  68. [68]
    S.J. Risch: Encapsulation of flavors by extrusion. In: Flavor Encapsulation, ed. by S.J. Risch, G.A. Reineccius (American Chemical Society, Washington 1988) pp. 103–109CrossRefGoogle Scholar
  69. [69]
    D.D. Roberts, T. Acree: Model development for flavour release from homogeneous phases. In: Flavour Science Recent Developments, ed. by A.J. Taylor, D.S. Mottram (The Royal Society of Chemistry, Cambridge 1996) pp. 399–404CrossRefGoogle Scholar
  70. [70]
    S. Lubbers, E. Guichard: The effects of sugars and pectin on flavour release from a fruit pastille model system, Food Chem. 81(2), 269–273 (2003)CrossRefGoogle Scholar
  71. [71]
    J.B. Mei, G.A. Reineccius, W.B. Knighton, E.P. Grimsrud: Influence of strawberry yogurt composition on aroma release, J. Agric. Food Chem. 52(20), 6267–6270 (2004)CrossRefGoogle Scholar
  72. [72]
    N. Cayot, C. Taisant, G. Arvisenet, J.M. Meunier, A. Voilley: Flavouring ratios and partition coefficients for isoamyl acetate in various starch-based food matrices, Sci. Aliment. 20(6), 561–574 (2000)CrossRefGoogle Scholar
  73. [73]
    E.P. Kora, I. Souchon, E. Latrille, N. Martin, M. Marin: Composition rather than viscosity modifies the aroma compound retention of flavored stirred yogurt, J. Agric. Food Chem. 52(10), 3048–3056 (2004)CrossRefGoogle Scholar
  74. [74]
    M. Martuscelli, G. Savary, P. Pittia, N. Cayot: Vapour partition of aroma compounds in strawberry flavoured custard cream and effect of fat content, Food Chem. 108(4), 1200–1207 (2008)CrossRefGoogle Scholar
  75. [75]
    C. Heinemann, B. Conde-Petit, J. Nuessli, F. Escher: Evidence of starch inclusion complexation with lactones, J. Agric. Food Chem. 49(3), 1370–1376 (2001)CrossRefGoogle Scholar
  76. [76]
    C. Heinemann, M. Zinsli, A. Renggli, F. Escher, B. Conde-Petit: Influence of amylose-flavor complexation on build-up and breakdown of starch structures in aqueous food model systems, Lebensm.-Wiss. Technol. 38(8), 885–894 (2005)CrossRefGoogle Scholar
  77. [77]
    G. Wulff, G. Avgenaki, M.S.P. Guzmann: Molecular encapsulation of flavours as helical inclusion complexes of amylase, J. Cereal Sci. 41(3), 239–249 (2005)CrossRefGoogle Scholar
  78. [78]
    M. Tietz, A. Buettner, B. Conde-Petit: Interaction between starch and aroma compounds as measured by proton transfer reaction mass spectrometry (ptr-ms), Food Chem. 108(4), 1192–1199 (2008)CrossRefGoogle Scholar
  79. [79]
    N. Cayot, F. Pretot, J.L. Doublier, J.M. Meunier, E. Guichard: Release of isoamyl acetate from starch pastes of various structures: Thermodynamic and kinetic parameters, J. Agric. Food Chem. 52, 5436–5442 (2004)CrossRefGoogle Scholar
  80. [80]
    G. Arvisenet, A. Voilley, N. Cayot: Retention of aroma compounds in starch matrices: Competitions between aroma compounds toward amylose and amylopectin, J. Agric. Food Chem. 50(25), 7345–7349 (2002)CrossRefGoogle Scholar
  81. [81]
    M.M. Kenyon: Modified starch, maltodextrin, and corn syrup solids as wall materials for food encapsulation. In: Encapsulation and Controlled Release of Food Ingredients, ed. by S.J. Risch, G.A. Reineccius (American Chemical Society, Washington 1995) pp. 42–50CrossRefGoogle Scholar
  82. [82]
    E. Dumoulin: Amélioration de la stabilité des compositions aromatiques par encapsulation. Conservation et stabilité des arômes (ADRIA, Paris 1997) in FrenchGoogle Scholar
  83. [83]
    A. Voilley, D. Simatos: Retention of aroma during freeze and air drying. In: Food Process Engineering, ed. by P. Linko, Y. Malkki, J. Olkku, J. Larinkari (Applied Sciences, London 1980)Google Scholar
  84. [84]
    M. Rosenberg, I.J. Kopelman, Y. Talmon: Factors affecting retention in spray-drying microencapsulation of volatiles materials, J. Agric. Food Chem. 38, 1288–1294 (1990)CrossRefGoogle Scholar
  85. [85]
    G. Wulf, S. Kubik: Helical amylose complexes with organic complexands, Makromol. Chem. 193, 1071–1080 (1992)CrossRefGoogle Scholar
  86. [86]
    G. Arvisenet, P. Le Bail, A. Voilley, N. Cayot: Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in food-like matrices, J. Agric. Food Chem. 50(24), 7088–7093 (2002)CrossRefGoogle Scholar
  87. [87]
    A. Boutboul, P. Giampaoli, A. Feigenbaum, V. Ducruet: Influence of the nature and treatment of starch on aroma retention, Carbohyd. Polym. 47, 73–82 (2002)CrossRefGoogle Scholar
  88. [88]
    A.B. Boland, K. Buhr, P. Giannouli, S.M. van Ruth: Influence of gelatin, starch, pectin and artificial saliva on the release of 11 flavour compounds from model gel systems, Food Chem. 86, 401–411 (2004)CrossRefGoogle Scholar
  89. [89]
    M.A. Pozo-Bayon, B. Biais, V. Rampon, N. Cayot, P. Le Bail: Influence of complexation between amylose and a flavored model sponge cake on the degree of aroma compound release, J. Agric. Food Chem. 56(15), 6640–6647 (2008)CrossRefGoogle Scholar
  90. [90]
    S. Lubbers, N. Decourcelle, D. Martinez, E. Guichard, A. Tromelin: Effect of thickeners on aroma compound behavior in a model dairy gel, J. Agric. Food Chem. 55(12), 4835–4841 (2007)CrossRefGoogle Scholar
  91. [91]
    S. Anadaraman, G.A. Reineccius: Stability of encapsulated orange peel oil, Food Technol. 40(11), 88–91 (1986)Google Scholar
  92. [92]
    A. Doreau: Une nouvelle famille d’agents d’encapsulation, Parfum. Cosmét. Arômes 113, 74–76 (1993), in FrenchGoogle Scholar
  93. [93]
    P.C. Trubiano: The role of speciality food starches in flavor encapsulation. In: Flavor Technology, ed. by C.-T. Ho, C.-T. Tan, C.-H. Tong (American Chemical Society, Washington 1995) pp. 244–255Google Scholar
  94. [94]
    W.E. Bangs, G.A. Reineccius: Characterization of selected materials for lemon oil encapsulation by spray drying, J. Food Sci. 55, 1356–1358 (1990)CrossRefGoogle Scholar
  95. [95]
    J. Szejtli: Utilization of cyclodextrins in industrial products and processes, J. Mater. Chem. 7, 575–587 (1997)CrossRefGoogle Scholar
  96. [96]
    W.J. Shieh, A.R. Hedges: Properties and applications of cyclodextrins, J. Macrom. Sci. A 33, 673–683 (1996)CrossRefGoogle Scholar
  97. [97]
    I. Sanemasa, Y. Wu, Y. Koide, T. Fujii, H. Takahashi, T. Deguchi: Stability on drying of cyclodextrin precipitates of volatile non electrolytes, Bull. Chem. Soc. Jpn. 67, 2744–2750 (1994)CrossRefGoogle Scholar
  98. [98]
    E. Cohen-Maurel: Arômes, le piège des β-cyclodextrines, Process 1092, 48–49 (1994), in FrenchGoogle Scholar
  99. [99]
    M. Fiess: Les cyclodextrines enfin abordables, R.I.A. 512, 37–38 (1994), in FrenchGoogle Scholar
  100. [100]
    F. Thevenet: Acacia gums: Natural encapsulation agent for food ingredients. In: Encapsulation and Controlled Release of Food Ingredients, ed. by S. Risch, G.A. Reineccius (American Chemical Society, Washington 1995) pp. 51–59CrossRefGoogle Scholar
  101. [101]
    E. Bylaite, J. Adler-Nissen, A.S. Meyer: Effect of xanthan on flavor release from thickened viscous food model systems, J. Agric. Food Chem. 53, 3577–3583 (2005)CrossRefGoogle Scholar
  102. [102]
    S. Damodaran, J.E. Kinsella: Flavor protein interactions. Binding of carbonyls to bovine serum albumin: Thermodynamic and conformational effects, J. Agric. Food Chem. 28, 567–571 (1980)CrossRefGoogle Scholar
  103. [103]
    T.E. O’Neill, J.E. Kinsella: Binding of alkanone flavors to β-lactoglobulin: Effects of conformational and chemical modification, J. Agric. Food Chem. 35, 770–774 (1987)CrossRefGoogle Scholar
  104. [104]
    L.G. Phillips, D.M. Whitehead, J.E. Kinsella: Structure-Function Properties of Food Proteins (Academic Press, New York 1994)Google Scholar
  105. [105]
    L.S. Jackson, L.K. Lee: Microencapsulation and the food industry, Lebensm.-Wiss. Technol. 24, 289–297 (1991)Google Scholar
  106. [106]
    S.F. O’Keefe, A.P. Resurreccion, L.A. Wilson, P.A. Murphy: Temperature effect on binding of volatile flavor compounds to soy protein in aqueous model systems, J. Food Sci. 56, 802–806 (1991)CrossRefGoogle Scholar
  107. [107]
    A.P. Hansen, J.J. Heinis: Benzaldehyde, citral, and d-limonene flavor perception in the presence of casein and whey proteins, J. Dairy Sci. 75, 1211–1215 (1992)CrossRefGoogle Scholar
  108. [108]
    E. Guichard: Interactions between flavor compounds and food ingredients and their influence on flavor perception, Food Rev. Int. 18(1), 49–70 (2002)CrossRefGoogle Scholar
  109. [109]
    K.G.C. Weel, A.E.M. Boelrijk, A.C. Alting, P.J.J.M. VanMil, J.J. Burger, H. Gruppen, A.G.J. Voragen, G. Smit: Flavor release and perception of flavored whey protein gels: Perception is determined by texture rather than by release, J. Agric. Food Chem. 50, 5149–5155 (2002)CrossRefGoogle Scholar
  110. [110]
    K. Fares, P. Landy, R. Guilard, A. Voilley: Physicochemical interactions between aroma compounds and milk proteins: Effect of water and protein modification, J. Dairy Sci. 81(1), 82–91 (1998)CrossRefGoogle Scholar
  111. [111]
    E. Guichard: Flavour retention and release from protein solutions, Biotechnol. Adv. 24(2), 226–229 (2006)CrossRefGoogle Scholar
  112. [112]
    A. Meynier, V. Rampon, M. Dalgalarrondo, C. Genot: Hexanal and t-2-hexenal form covalent bonds with whey proteins and sodium caseinate in aqueous solution, Int. Dairy J. 14(8), 681–690 (2004)CrossRefGoogle Scholar
  113. [113]
    I. Andriot, M. Harrison, N. Fournier, E. Guichard: Interactions between methyl ketones and beta-lactoglobulin: Sensory analysis, headspace analysis, and mathematical modeling, J. Agric. Food Chem. 48(9), 4246–4251 (2000)CrossRefGoogle Scholar
  114. [114]
    J. Kuhn, X..Q. Zhu, T. Considine, H. Singh: Binding of 2-nonanone and milk proteins in aqueous model systems, J. Agric. Food Chem. 55(9), 3599–3604 (2007)CrossRefGoogle Scholar
  115. [115]
    J. Kuhn, T. Considine, H. Singh: Binding of flavor compounds and whey protein isolate as affected by heat and high pressure treatment, J. Agric. Food Chem. 56(21), 10218–10224 (2008)CrossRefGoogle Scholar
  116. [116]
    A.P. Hansen: A review of the interactions between milk proteins and dairy flavor compounds, Adv. Exp. Med. Biol. 415, 67–76 (1997)CrossRefGoogle Scholar
  117. [117]
    D.M. Mulvihill, M. Donovan: Whey proteins and their thermal denaturation. A review, Ir. J. Food Sci. Technol. 11, 43–75 (1987)Google Scholar
  118. [118]
    J. Belloque, G.M. Smith: Thermal denaturation of β lactoglobulin. A 1H NMR study, J. Agric. Food Chem. 46, 1805–1813 (1998)CrossRefGoogle Scholar
  119. [119]
    T.V. Burova, N.V. Grinberg, V.Y. Grinberg, V.B. Tolstoguzov: Binding of odorants to individual proteins and their mixtures. Effects of protein denaturation and association. A plasticized globule state, Colloids Surf. A 213(2/3), 235–244 (2003)CrossRefGoogle Scholar
  120. [120]
    L. Tavel, C. Moreau, S. Bouhallab, E.C.Y. Li-Chan, E. Guichard: Interactions between aroma compounds and beta-lactoglobulin in the heat-induced molten globule state, Food Chem. 119(4), 1550–1556 (2010)CrossRefGoogle Scholar
  121. [121]
    E. Paci Kora, I. Souchon, E. Latrille, N. Martin, M. Marin: Composition rather than viscosity modifies the aroma compound retention of flavored stirred yogurt, J. Agric. Food Chem. 52, 3048–3056 (2004)CrossRefGoogle Scholar
  122. [122]
    N. Decourcelles: Interactions Composition-Structure-Texture-Flaveur dans le Yaourt Brassé Sans Matière Grasse Aromatisé ’à la Fraise’: Rôles des Agents de Texture, des Édulcorants, et du Temps, Ph.D. Thesis (Université de bourgogne, Dijon 2004), in FrenchGoogle Scholar
  123. [123]
    A. Nongonierma, M. Springett, J.L. Le Quere, P. Cayot, A. Voilley: Flavour release at gas/matrix interfaces of stirred yoghurt models, Int. Dairy J. 16, 102–110 (2006)CrossRefGoogle Scholar
  124. [124]
    A. Saint-Eve, C. Lévy, N. Martin, I. Souchon: Influence of proteins on the perception of flavored stirred yogurts, J. Dairy Sci. 89(3), 922–933 (2006)CrossRefGoogle Scholar
  125. [125]
    O.E. Mills, J. Solms: Interaction of selected flavour compounds with whey proteins, Lebensm.-Wiss. Technol. 17, 331–335 (1984)Google Scholar
  126. [126]
    A.-M. Seuvre, M.A. Espinosa Díaz, A. Voilley: Influence of the food matrix structure on the retention of aroma compounds, J. Agric. Food Chem. 48(9), 4296–4300 (2000)CrossRefGoogle Scholar
  127. [127]
    A.-M. Seuvre, M.A. Espinosa Díaz, A. Voilley: Retention of aroma compounds by β-lactoglobulin in different conditions, Food Chem. 77(4), 421–429 (2001)CrossRefGoogle Scholar
  128. [128]
    A.-M. Seuvre, M.A. Espinosa Díaz, A. Voilley: A transfer of aroma compounds through the lipidic-aqueous interface in a complex system, J. Agric. Food Chem. 50(5), 1106–1110 (2002)CrossRefGoogle Scholar
  129. [129]
    I.M. Jalal, G. Zografi, A.K. Rakshit, F.D. Gunston: Thermal analysis of fatty acids, Chem. Phys. Lipids 31, 395–404 (1982)CrossRefGoogle Scholar
  130. [130]
    K.B. De Roos: How lipids influence food flavor, Food Technol. 51(1), 60–62 (1997)Google Scholar
  131. [131]
    S.E. Ebeler, R.M. Pangborn, W.G. Jennings: Influence of dispersion medium on aroma intensity and headspace concentration of menthone and isoamyl acetate, J. Agric. Food Chem. 36, 791–796 (1988)CrossRefGoogle Scholar
  132. [132]
    H.D. Belitz, W. Grosch: Food Chemistry (Springer, New York 1994)Google Scholar
  133. [133]
    R.G. Buttery, J.L. Bomben, D.G. Guadagni, L.C. Ling: Some considerations of the volatilities of organic flavor compounds in foods, J. Agric. Food Chem. 19, 1045–1048 (1971)CrossRefGoogle Scholar
  134. [134]
    M.S. Brauss, R.S.T. Linforth, I. Cayeux, B. Harvey, A.J. Taylor: Altering the fat content affects flavor release in a model yoghurt system, J. Agric. Food Chem. 47, 2055–2059 (1999)CrossRefGoogle Scholar
  135. [135]
    S. Van Ruth, C. King, C. Giannouli: Influence of lipid fraction, emulsifier fraction, and mean particle diameter of oil-in-water emulsions on the release of 20 aroma compounds, J. Agric. Food Chem. 50, 2365–2371 (2002)CrossRefGoogle Scholar
  136. [136]
    H. Plug, P. Haring: The role of ingredient-flavour interactions in the development of fat-free foods, Trends Food Sci. Technol. 4, 150–152 (1993)CrossRefGoogle Scholar
  137. [137]
    M. Le Thanh: Extraction de Substances Aromatisantes Produites par Voie Microbiologique. Etude des Interactions Entre Substances d’Arôme et Constituants d’un Milieu de Culture Liquide, Ph.D. Thesis (Université de Bourgogne, Dijon 1992), in FrenchGoogle Scholar
  138. [138]
    R.G. Buttery, D.G. Guadagni, L.C. Ling: Flavor compounds: Volatilities in vegetable oil and oil-water mixtures. Estimation of odor thresholds, J. Agric. Food Chem. 21, 198–201 (1973)CrossRefGoogle Scholar
  139. [139]
    D.G. Land, J. Reynolds: The influence of food components on the volatility of diacetyl, Proc. Int. Conf. Flavour (1981) pp. 701–705Google Scholar
  140. [140]
    K.M.M. Burseg, R.S.T. Linforth, J. Hort, A.J. Taylor: Flavor perception in biscuits; Correlating sensory properties with composition, aroma release, and texture, Chemosen. Percept. 2, 70–78 (2009)CrossRefGoogle Scholar
  141. [141]
    J. Bakker: Flavor interactions with the food matrix and their effects on perception. In: Ingredient Interactions. Effect on Food Quality, ed. by A.G. Gaonkar (Marcel Dekker, New York 1995) pp. 411–439Google Scholar
  142. [142]
    D.G. Land: Some factors influencing the perception of flavour-contributing substances in food. In: Progress in Flavor Research, ed. by D.G. Land, H. Nursten (Appl. Sci., London 1978) pp. 53–56Google Scholar
  143. [143]
    R. Aveyard, R.W. Mitchell: Distribution of n-alkanols between water and n-alkanes, Trans. Faraday Soc. 65, 2645–2653 (1969)CrossRefGoogle Scholar
  144. [144]
    J.P. Schirle-Keller, G.A. Reineccius, L.C. Hatchwell: Flavor interactions with fat replacers: Effect of oil level, J. Food Sci. 59, 813–815 (1994)CrossRefGoogle Scholar
  145. [145]
    R. Smets, P. Huyskens: Stabilization by hydrogen bonds of pyridines and aliphatic amines in water, J. Chim. Phys. 75, 1–8 (1978)Google Scholar
  146. [146]
    P. Huyskens, F. Nauwelaerts: Stabilization by hydrogen bonds of ketones in water, Bull. Soc. Chim. Belg. 89, 951–956 (1980)CrossRefGoogle Scholar
  147. [147]
    L.C. Hatchwell: Implications of fat on flavour. In: Flavor-Food Interactions, ed. by R.J. McGorrin, J.V. Leland (American Chemical Society, Washington 1996) pp. 14–23CrossRefGoogle Scholar
  148. [148]
    A. Voilley, D. Simatos, M. Loncin: Gas phase concentration of volatiles in equilibrium with a liquid aqueous phase, Lebensm.-Wiss. Technol. 10, 45–49 (1977)Google Scholar
  149. [149]
    L. Poll, J.M. Flink: Aroma analysis of apple juice: Influence of salt addition on headspace volatile composition as measured by gas chromatography and corresponding sensory evaluations, Food Chem. 13, 193–207 (1984)CrossRefGoogle Scholar
  150. [150]
    W.W. Nawar: Some variables affecting composition of headspace aroma, J. Agric. Food Chem. 19, 1057–1059 (1971)CrossRefGoogle Scholar
  151. [151]
    C. Lauverjat, I. Déléris, I.C. Tréléa, C. Salles, I. Souchon: Salt and aroma compound release in model cheeses in relation to their mobility, J. Agric. Food Chem. 57, 9878–9887 (2009)CrossRefGoogle Scholar
  152. [152]
    E. Dickinson: Les émulsions. In: Les Colloïdes Alimentaires, (Masson, Paris 1992) pp. 85–128Google Scholar
  153. [153]
    P. Cayot, D. Lorient: Structures et Technofonctions des Protéines du Lait (Lavoisier, Technique and Documentation, Paris 1998)Google Scholar
  154. [154]
    P. Overbosch, W.G.M. Agterof, P.G.M. Haring: Flavor release in the mouth, Food Rev. Int. 7, 137–184 (1991)CrossRefGoogle Scholar
  155. [155]
    P.B. McNulty: Flavour release – Elusive and dynamic. In: Food Structure and Behavior, ed. by J.M.V. Blanshard, P. Lillford (Academic Press, London 1987) pp. 245–259Google Scholar
  156. [156]
    J.E. Kinsella: Flavor perception and binding to food components. In: Flavor chemistry of lipid foods, ed. by D.B. Min, T.H. Smouse (American Oil Chemists Society, Champaign 1989) pp. 376–403Google Scholar
  157. [157]
    D.J. McClements: Food emulsions: Principles, Practice, and Techniques (CRC, Boca Raton 1999)Google Scholar
  158. [158]
    R.G. Buttery, R.M. Seifert, D.G. Guadagni, L.C. Ling: Volatilities of aldehydes, ketones and esters in dilute water solution, J. Agric. Food Chem. 17, 385–389 (1969)CrossRefGoogle Scholar
  159. [159]
    D. Salvador, J. Bakker, K.R. Langley, R. Potjewijd, A. Martin, S. Elmore: Flavor release of diacetyl from water, sunflower oil and emulsions in model systems, Food Qual. Prefer. 5, 103–107 (1994)CrossRefGoogle Scholar
  160. [160]
    B.A. Harvey, C. Druaux, A. Voilley: Effect of protein on the retention and transfer of aroma compounds at the lipid-water interface. In: Food Macromolecule and Colloids, ed. by E. Dickinson, D. Lorient (The Royal Society of Chemistry, Cambridge 1995) pp. 154–163CrossRefGoogle Scholar
  161. [161]
    C. Druaux, J.L. Courthaudon, A. Voilley: Influence de la structure d’une émulsion sur la volatilité des composés d’arôme, 8e Rencontres Agoral (Tec Doc Lavoisier, Paris 1996) pp. 255–260, in FrenchGoogle Scholar
  162. [162]
    M. Charles, V. Rosselin, L. Beck, F. Sauvageot, E. Guichard: Flavor release from salad dressings: Sensory and physico-chemical approaches in relation with the structure, J. Agric. Food Chem. 48(5), 1810–1816 (2000)CrossRefGoogle Scholar
  163. [163]
    S.M. Miettinen, H. Tuorila, V. Phronen, K. Vehkalahti, L. Hyvönen: Effect of emulsion characteristics on the release of aroma as detected by sensory evaluation, static headspace gas chromatography, and electronic nose, J. Agric. Food Chem. 50(15), 4232–4239 (2002)CrossRefGoogle Scholar
  164. [164]
    E. Dickinson: Hydrocolloids at interfaces and the influence on the properties of properties of dispersed systems, Food Hydrocoll. 17, 25–39 (2003)CrossRefGoogle Scholar
  165. [165]
    D. Marion, J.L. Doublier: Agents Emulsifiants. In: Additifs and Auxiliaires de Fabrication dans les Industries Agro-Alimentaires, ed. by J.L. Multon (Tec&Doc Lavoisier, Paris 1992), in FrenchGoogle Scholar
  166. [166]
    P. Walstra, A.L. De Roos: Proteins at air-water and oil-water interfaces: Static and dynamic aspects, Food Rev. Int. 9, 503–525 (1993)CrossRefGoogle Scholar
  167. [167]
    J.E. Kinsella: Milk proteins: Physicochemical and functional properties, Crit. Rev. Food Sci. Nut. 21(3), 197–262 (1984)CrossRefGoogle Scholar
  168. [168]
    S.O. Agboola, D.G. Dalgleish: Calcium-induced destabilization of oil-in-water emulsions stabilized by caseinate or by β-lactoglobulin, J. Food Sci. 60, 399–404 (1995)CrossRefGoogle Scholar
  169. [169]
    J.D. McClements, F.J. Monahan, T.E. Kinsella: Disulfide bond formation affects stability of whey protein isolate emulsions, J. Food Sci. 58, 1036–1039 (1993)CrossRefGoogle Scholar
  170. [170]
    A.J. Taylor: Physical chemistry of flavour, Int. J. Food Sci. Tech. 7, 53–62 (1998)CrossRefGoogle Scholar
  171. [171]
    A. Voilley: Contribution à l’Étude de la Rétention des Composés Volatils Lors de la Déshydratation des Produits Alimentaires, Ph.D. Thesis (Université de Bourgogne, Dijon 1975), in FrenchGoogle Scholar
  172. [172]
    M. Marin, I. Beak, A.J. Taylor: Volatile release from aqueous solutions under dynamic headspace dilution conditions, J. Agric. Food Chem. 47, 4750–4755 (1999)CrossRefGoogle Scholar
  173. [173]
    O. Benjamin, M. Leus, D.W. Everett: Static headspace analysis of volatile compounds released from β-lactoglobulin stabilized emulsion determined by phase ratio variation method, Food Res. Int. 44, 417–424 (2011)CrossRefGoogle Scholar
  174. [174]
    J.C. Leroi, J.C. Masson, H. Renon, J.F. Fabries, H. Sannier: Accurate measurement of activity coefficients at infinite dilution by inert gas stripping and gas chromatography, Ind. Eng. Process. Des. Dev. 16, 139–144 (1977)CrossRefGoogle Scholar
  175. [175]
    F. Sorrentino, A. Voilley, D. Richon: Mesure de la volatilité de substances d’arôme à l’aide de deux techniques, Sci. Aliments 4(3), 105–110 (1984), in FrenchGoogle Scholar
  176. [176]
    S. Langourieux, J. Crouzet: Study of aroma compound-natural polymer interactions by dynamic coupled column liquid chromatography, J. Chromatogr. A. 707, 181–187 (1995)CrossRefGoogle Scholar
  177. [177]
    V.M. Athès: Pena y Lillo, C. Bernard, R. Perez-Correa, I. Souchon: Comparison of experimentals methods for measuring infinite dilution volatilities of aroma compounds in water/ethanol mixtures, J. Agric. Food Chem. 52, 2021–2027 (2004)CrossRefGoogle Scholar
  178. [178]
    A. Voilley, M. Loncin: Une méthode simple pour la détermination des coefficients d’activité de substances d’arôme modèles peu solubles dans l’eau, Ind. Aliment. Agric. 137, 1417–1418 (1976), in FrenchGoogle Scholar
  179. [179]
    S. Damadoran, J.E. Kinsella: Interaction of carbonyls with soy protein: Thermodynamic effects, J. Agric. Food Chem. 29, 1249–1253 (1981)CrossRefGoogle Scholar
  180. [180]
    S. Damadoran, J.E. Kinsella: Interaction of carbonyls with soy protein: Conformational effects, J. Agric. Food Chem. 29, 1253–1257 (1981)CrossRefGoogle Scholar
  181. [181]
    E. Jasinski, A. Kilara: Flavor binding by whey proteins, Milchwissenchaft 40, 596–599 (1985)Google Scholar
  182. [182]
    E.E. Braudo, I.G. Plashchina, V.V. Kobak, R.V. Golovnya, I.L. Zhuravleva, N.I. Krikunova: Interactions of flavor compounds with pectic substances, Nahrung 44, 173–177 (2000)CrossRefGoogle Scholar
  183. [183]
    J.P. Hummel, W.J. Dreyer: Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63, 530–532 (1962)CrossRefGoogle Scholar
  184. [184]
    S.F. O’Keefe, L.A. Wilson, A.P. Resurreccion, P.A. Murphy: Determination of the binding of hexanal to soy glycinin and β-conglycinin in an aqueous model system using a Headspace technique, J. Agric. Food Chem. 39, 1022–1028 (1991)CrossRefGoogle Scholar
  185. [185]
    A. Chaintreau, A. Grade, R. Munoz-Box: Determination of partition coefficients and quantification of headspace volatile compounds, Anal. Chem. 67, 3300–3304 (1995)CrossRefGoogle Scholar
  186. [186]
    J. Delarue, P. Giampaoli: Study of interaction phenomena between aroma compounds and carbohydrate matrixes by inverse gas chromatography, J. Food Chem. 48, 2372–2375 (2000)CrossRefGoogle Scholar
  187. [187]
    A. Boutboul, F. Lenfant, P. Giampaoli, A. Feigenbaum, V. Ducruet: Use of inverse chromatography to determine thermodynamic parameters of aroma-starch interactions, J. Chromatogr. A 969, 9–16 (2002)CrossRefGoogle Scholar
  188. [188]
    I. Goubet: Rétention d’Arôme par des Polyosides à des Teneurs Variables en Eau, Ph.D. Thesis (Université de Bourgogne, Dijon 1999), in FrenchGoogle Scholar
  189. [189]
    G. Ucello-Barretta, C. Chiavacci, C. Bertucci, P. Salvadori: Stereochemistry and dynamics of the inclusion complex of (S)-(\(+\))-fenoprofen with cyclomaltoheptaose (β-cyclodextrin), Carbohyd. Res. 243, 1–10 (1993)CrossRefGoogle Scholar
  190. [190]
    A. Voilley, M. Le Meste: Aroma diffusion: The influence of water activity and of molecular weight of the other solutes. In: Properties of Water in Foods in Relation to Quality and Stability, Nato Science Series E, ed. by D. Simatos, J.L. Multon (Martinus Nijhoff Publishers, Dordrecht 1985) pp. 357–373CrossRefGoogle Scholar
  191. [191]
    M.E. Carey, T. Asquith, R.S.T. Linforth, A.J. Taylor: Modeling the partition of volatile aroma compounds from a cloud emulsion, J. Agric. Food Chem. 50, 1985–1990 (2002)CrossRefGoogle Scholar
  192. [192]
    P.B. McNulty, M. Karel: Factors affecting flavour release and uptake in O/W emulsions I. Release and uptake models, J. Food Technol. 8, 309–318 (1973)CrossRefGoogle Scholar
  193. [193]
    K.B. De Roos, K. Wolswinkel: Non-equilibrium partition model for predicting flavour release in the mouth. In: Trends in Flavour Research, ed. by H. Maarse, D.G. van der Heij (Elsevier, Amsterdam 1994) pp. 53–57Google Scholar
  194. [194]
    M. Harrison: Effect of saliva-flow on flavour release from liquid foods, Proc. COST, Vol. 2 (1997) pp. 91–96Google Scholar
  195. [195]
    M. Harrison: Effect of breathing and saliva-flow on flavour release from liquid foods, J. Agric. Food Chem. 46, 2–34 (1998)Google Scholar
  196. [196]
    M. Harrison, B.P. Hills: A mathematical model to describe flavour release from gelatine gels, Int. J. Food Sci. Tech. 31, 167–176 (1996)CrossRefGoogle Scholar
  197. [197]
    M. Harrison, B.P. Hills: Effects of air flow-rate on flavour release from liquid emulsions in the mouth, Int. J. Food Sci. Tech. 32, 1–9 (1997)CrossRefGoogle Scholar
  198. [198]
    M. Harrison, B.P. Hills: Mathematical model of flavor release from liquids containing aroma-binding macromolecules, J. Agric. Food Chem. 45, 1883–1890 (1997)CrossRefGoogle Scholar
  199. [199]
    M. Harrison, B.P. Hills, J. Bakker, T. Clothier: Mathematical models of flavor release from liquid emulsions, J. Food Sci. 62(4), 653–664 (1997)CrossRefGoogle Scholar
  200. [200]
    M. Harrison, S. Campbell, B.P. Hills: Computer simulation of flavour release from solid foods in the mouth, J. Agric. Food Chem. 46, 2736–2743 (1998)CrossRefGoogle Scholar
  201. [201]
    C. Guyot, C. Bonnafont, L. Lesschaeve, S. Issanchou, A. Voilley, H.E. Spinnler: Effect of fat content on odor intensity of three aroma compounds in model emulsion: δ-decalactone, diacetyl, and butyric acid, J. Agric. Food Chem. 44, 2341–2348 (1996)CrossRefGoogle Scholar
  202. [202]
    C. Brossard, F. Rousseau, J.P. Dumont: Flavour release and flavour perception in oil-in-water emulsions: Is the link so close? In: Flavour Science Recent Developments, ed. by A.J. Taylor, D.S. Mottram (The Royal Society of Chemistry, Cambridge 1996) pp. 375–379CrossRefGoogle Scholar
  203. [203]
    B.P. Hills, M. Harrison: Two-film theory of flavour release from solids, Int. J. Food Sci. Tech. 30, 425–436 (1995)CrossRefGoogle Scholar
  204. [204]
    J. Bakker, N. Baudaud, M. Harrison: Dynamic release of diacetyl from liquid gelatin in the headspace, J. Agric. Food Chem. 46, 2714–2720 (1998)CrossRefGoogle Scholar
  205. [205]
    S. Pérez: Theoretical aspects of oligosaccharide conformation, Struct. Biol. 3, 675–680 (1993)Google Scholar
  206. [206]
    E.L. Neszmélyi, J. Hollo: Biomolecular modelling: An interactive program for the visualization and modelling of carbohydrate (starch and oligosaccharide) complexes in Solution, Starch-Stärke 39(11), 393–396 (1987)CrossRefGoogle Scholar
  207. [207]
    H. Dodziuk, K. Nowinski: Structure of cyclodextrins and their complexes. Part 2. Do cyclodextrins have a rigid truncated-cone structure?, J. Molec. Struct. (Theochem.) 304, 61–68 (1994)CrossRefGoogle Scholar
  208. [208]
    A. Kostense, S.P. Van Helden, L.H.M. Janssen: Modeling and conformation analysis of β-cyclodextrin complexes, J. Comput.-Aided Mol. Des. 5, 525–543 (1991)CrossRefGoogle Scholar
  209. [209]
    S.P. van Helden, M.J. Van Drooge, A.J. Claessens, A.C.A. Jansen, L.H.M. Janssen: A molecular modelling study of distortion of β-cyclodextrin (cyclomaltohexaose) in complexes with guest molecules, Carbohydr. Res. 215, 251–260 (1991)CrossRefGoogle Scholar
  210. [210]
    M.C. Godet, A. Colonna, A. Buleon: Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length, Int. J. Biol. Macromol. 17, 405–408 (1995)CrossRefGoogle Scholar
  211. [211]
    F.W. Lichtenthaler, S. Immel: Computer simulation of chemical and biological properties of sucrose, the cyclodextrins and amylase, Int. Sug. J. 97, 13–22 (1995)Google Scholar
  212. [212]
    F.W. Lichtenthaler, S. Immel: Towards understanding formation and stability of cyclodextrin inclusion complexes: Computation and visualisation of their molecular lipophilicity patterns, Starch-Stärke 48, 145–154 (1996)CrossRefGoogle Scholar
  213. [213]
    J. Reiners, S. Nicklaus, E. Guichard: Interactions between beta-lactoglobulin and flavour compounds of different chemical classes. Impact of the protein on the odour perception of vanillin and eugenol, Lait 80, 347–360 (2000)CrossRefGoogle Scholar
  214. [214]
    A. Tromelin, E. Guichard: 2d-and 3d-QSAR models of interaction between flavor compounds and beta-lactoglobulin using catalyst and cerius(2), Qsar Comb. Sci. 23(4), 214–233 (2004)CrossRefGoogle Scholar
  215. [215]
    J. Golebiowski, J. Topin, L. Charlier, L. Briand: Interaction between odorants and proteins involved in the perception of smell: The case of odorant-binding proteins probed by molecular modelling and biophysical data, Flavour Fragr. J. 27(6), 445–453 (2012)CrossRefGoogle Scholar
  216. [216]
    C. Achard: Modélisation des Propriétés d’Équilibre de Milieux Biologiques et Alimentaires à l’Aide de Modèles Prédictifs, Ph.D. Thesis (Université Blaise Pascal Clermont-Ferrand II, Clermont-Ferrant 1992), in FrenchGoogle Scholar
  217. [217]
    N. Cayot, C. Dury-Brun, T. Karbowiak, G. Savary, A. Voilley: Measurement of transport phenomena of volatile compounds: A review, Food Res. Int. 41, 349–362 (2008)CrossRefGoogle Scholar
  218. [218]
    A. Voilley, I. Souchon: Flavour retention and release from the food matrix: An overview. In: Flavour in Foods, ed. by A. Voilley, P. Etievant (Woodhead Publishing limited, Cambridge 2006)CrossRefGoogle Scholar
  219. [219]
    J.J. Bimbenet, M. Loncin: Bases du Génie des Procédés Alimentaires (Masson, Paris 1995) pp. 11–16, Transfert de matière et de chaleur, in FrenchGoogle Scholar
  220. [220]
    J. Crank: The Mathematics of Diffusion, 2nd edn. (Clarendon Press, Oxford 1975)Google Scholar
  221. [221]
    C. Castelain, F. Heil, I. Caffre, J.-P. Dumont: Perceived flavour of food versus distribution of food flavour compounds: Remind food texture! In: Trends in Flavour Research, ed. by H. Maarse, D.G. van der Heij (Elsevier, Amsterdam 1994) pp. 33–38Google Scholar
  222. [222]
    M. Kopjar, I. Andriot, A. Saint-Eve, I. Souchon, E. Guichard: Retention of aroma compounds: An interlaboratory study on the effect on the composition of food matrices on thermodynamic parameters in comparison with water, J. Sci. Food Agric. 90, 1285–1292 (2010)CrossRefGoogle Scholar
  223. [223]
    C. Dubois, M. Sergent, A. Voilley: Flavoring of complex media: A model cheese example. In: Flavor-Food Interactions, ed. by R.J. McGorrin, J.V. Leland (American Chemical Society, Washington 1996) pp. 217–228CrossRefGoogle Scholar
  224. [224]
    T.E. O’Neill: Flavor binding by food proteins: An overview. In: Flavor-Food Interactions, ed. by R.J. McGorrin, J.V. Leland (American Chemical Society, Washington 1996) pp. 56–74Google Scholar
  225. [225]
    T. Vandamme, T. Poncelet, P. Subra-Paternault: Microencapsulation: Des Sciences aux Technologies (Tec&Doc Lavoisier, Paris 2007), in FrenchGoogle Scholar
  226. [226]
    A. Madene, M. Jacquot, J. Scher, S. Desobry: Flavour encapsulation and controlled release – A review, Int. J. Food Sci. Technol. 41, 1–21 (2006)CrossRefGoogle Scholar
  227. [227]
    C. Heinzen: Microencapsulation solve time dependent problems for foodmarker, Eur. Food Drink Rev. 3, 27–30 (2002)Google Scholar
  228. [228]
    G.A. Reineccius: Edible films and coatings for flavor encapsulation. In: Edible Films and Coatings for Food Applications, ed. by M.E. Embuscado, K.C. Huber (Springer, London 2009) pp. 269–294CrossRefGoogle Scholar
  229. [229]
    Y.D. Kim, C.V. Morr, T.W. Schenz: Microencapsulation of gum arabic and several food proteins: Liquid orange oil emulsion particles, J. Agric. Food Chem. 44(5), 1308–1313 (1996)CrossRefGoogle Scholar
  230. [230]
    D.M. Dronen: Characterization of Volatile Loss from Dry Food Polymer Materials. Ph.D. Thesis Ser (University of Minnesota, Minneapolis 2004)Google Scholar
  231. [231]
    R.A. Rodrigues, C.R. Grosso: Cashew gum microencapsulation protects the aroma of coffee extracts, J. Microencapsul. 25(1), 13–20 (2008)CrossRefGoogle Scholar
  232. [232]
    M. Martin-Polo, C. Mauguin, A. Voilley: Hydrophobic films and their efficiency against moisture transfer. 2. Influence of the physical state, J. Agric. Food Chem. 40, 407–412 (1992)CrossRefGoogle Scholar
  233. [233]
    R. Ciriminna, M. Pagliaro: Sol–gel microencapsulation of odorants and flavors: Opening the route to sustainable fragrances and aromas, Chem. Soc. Rev. 42, 9243–9250 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.UMR PAM Food Processing and MicrobiologyUniversity of Burgundy/Agrosup DijonDijonFrance

Personalised recommendations